Iron is involved in prion disease-associated neuronal demise

Mar 13, 2009

Imbalance of iron homeostasis is a common feature of prion disease-affected human, mouse, and hamster brains, according to a new study by Dr. Neena Singh and colleagues at Case Western Reserve University School of Medicine, alongside collaborators from Creighton University. These findings, published March 13 in the open-access journal PLoS Pathogens, provide new insight into the mechanism of neurotoxicity in prion disorders, and novel avenues for the development of therapeutic strategies.

Unlike other neurodegenerative conditions, are sporadic, inherited, and infectious, and affect both humans and animals; common examples are in cattle, scrapie in sheep, and Creutzfeldt-Jakob disease in humans. The causative agent is a misfolded protein referred to as PrP-scrapie that replicates itself by changing the conformation of neighboring copies of the same protein, namely the . Aggregates of PrP-scrapie are toxic to and cause a spongy-like appearance in diseased brains.

Research from the Singh laboratory suggests that accumulation of PrP-scrapie alters the metabolism of in diseased brains. The imbalance of brain worsens with disease progression, and is not an outcome of end-stage disease. Since iron is highly toxic when mismanaged, this condition is likely to contribute significantly to prion-disease-associated neurotoxicity. The likely cause of this condition is loss of normal function of the prion protein in cellular demonstrated recently by Singh and colleagues, combined with gain of toxic function by the redox-active PrP-scrapie complex as shown in this report.

Singh and her team were surprised to find that prion disease-affected brains are iron deficient despite a significant increase in their overall iron content. The group concludes that ferritin, a major iron storage protein, co-aggregates with PrP-scrapie in diseased brains and sequesters bound iron in the complex, creating a state of apparent iron deficiency. The brain cells respond to this condition by increasing their level of iron uptake, thus creating a vicious cycle of increased iron uptake in the presence of increased iron.

These observations contribute to our understanding of how the prion agent causes neurotoxicity, and may enable the development of novel therapeutic strategies targeted at restoring brain iron homeostasis in prion disorders.

More information: Singh A, Isaac AO, Luo X, Mohan ML, Cohen ML, et al. (2009) Abnormal Brain Iron Homeostasis in Human and Animal Prion Disorders. PLoS Pathog 5(3): e1000336. doi:10.1371/journal.ppat.1000336, dx.plos.org/10.1371/journal.ppat.1000336

Source: Public Library of Science (news : web)

Explore further: Scientists find new calorie-burning switch in brown fat

add to favorites email to friend print save as pdf

Related Stories

Is there more to prion protein than mad cow disease?

Sep 30, 2008

Prion protein, a form of protein that triggers BSE, is associated with other brain diseases in cattle, raising the possibility of a significant increase in the range of prion disease. Publishing their findings in the open ...

New prion protein may offer insight into mad cow disease

Aug 16, 2007

Scientists have discovered a new protein that may offer fresh insights into brain function in mad cow disease. “Our team has defined a second prion protein called ‘Shadoo’, that exists in addition to the well-known ...

Transmitting prion diseases in milk

Apr 08, 2008

Scrapie can be transmitted to lambs through milk, according to new research published in the online open access journal BMC Veterinary Research. The study provides important information on the transmission of this prion-associated ...

Recommended for you

Small RNAs in blood may reveal heart injury

3 hours ago

(Medical Xpress)—Like clues to a crime, specific molecules in the body can hint at exposure to toxins, infectious agents or even trauma, and so help doctors determine whether and how to treat a patient. ...

Researchers uncover clues to flu's mechanisms

7 hours ago

A flu virus acts like a Trojan horse as it attacks and infects host cells. Scientists at Rice University and Baylor College of Medicine have acquired a clearer view of the well-hidden mechanism involved.

User comments : 0