Cracking the spatial memory code

Mar 12, 2009

Researchers have shown that they can tell where a person is "standing" within a virtual reality room on the basis of the pattern of activity in the brain alone. The findings, published online on March 12th in Current Biology, a Cell Press publication, offer compelling evidence that the hippocampus, a region of the brain critical to navigation, memory, and imagining future experiences, works in a structured and predictable way. That discovery is contrary to what many experts had previously suspected, according to the researchers.

"You can predict where someone is standing by reading the patterns in their ," said Demis Hassabis of University College London. "You can track what is purely an internal thought."

"With this kind of research, we are approaching the realm of mindreading," added Eleanor Maguire, also of University College London.

In the new study, Hassabis, Maguire, and their colleagues asked four participants to navigate to target locations within a while their brains were scanned with a imager (fMRI). fMRI measures related to neural activity in the brain. They then applied a sophisticated analytical procedure known as multivariate pattern classification to see if they could relate the pattern of brain activity to each individual's location in virtual space.

And it worked. The pattern they uncovered reflected the participants' memory for where they were, the researchers explained, since once they had reached their final destination, there were no visual cues to discern one target spot from another. The activity they examined spanned some two to five million of the 40 million or so cells in the hippocampus, Hassabis noted.

Earlier studies done primarily in rats had suggested that stored in the hippocampus had neuronal representations that were uniform and randomly distributed. But if that were the whole story, the predictions made in the new study would not have been possible.

Now that they have shown that such a predictable functional structure exists in the hippocampus, additional studies will seek to crack that neural code for other memories. Indeed, spatial representations of the type investigated in the study are thought to form the scaffold upon which memories of our personal experiences, known as episodic memories, are built.

"By showing it is possible to detect and discriminate between memories of adjacent spatial positions, our combination of non-invasive in vivo high-resolution fMRI and multivariate analyses opens up a new avenue for exploring episodic memory at the population level," the researchers wrote. "In the future it may be feasible to decode individual episodic memory traces from the activity of neuronal ensembles in the human hippocampus."

"We know that the hippocampus is critical for remembering our life experiences," Maguire said. This discovery "opens a whole world of possibility previously thought inaccessible to human brain imaging."

Source: Cell Press (news : web)

Explore further: Study links enzyme to autistic behaviors

add to favorites email to friend print save as pdf

Related Stories

Patients with amnesia 'live in the present'

Jan 16, 2007

Scientists at the Wellcome Trust Centre for Neuroimaging, University College London, have shown that people with damage to the hippocampus, the area of the brain that plays a crucial role in learning and memory, not only ...

Tales of the unexpected: how the brain detects novelty

Nov 28, 2006

When you sit down to watch a DVD of your favourite film, the chances are that you are able to predict the exact sequence of events that is about to unfold. Without our memories we would not only be unable to remember our ...

The 'satellite navigation' in our brains

Sep 11, 2008

Our brains contain their own navigation system much like satellite navigation ("sat-nav"), with in-built maps, grids and compasses, neuroscientist Dr Hugo Spiers told the BA Festival of Science at the University of Liverpool ...

Recommended for you

Study links enzyme to autistic behaviors

16 hours ago

Fragile X syndrome (FXS) is a genetic disorder that causes obsessive-compulsive and repetitive behaviors, and other behaviors on the autistic spectrum, as well as cognitive deficits. It is the most common ...

A new cause of mental disease?

22 hours ago

Astrocytes, the cells that make the background of the brain and support neurons, might be behind mental disorders such as depression and schizophrenia, according to new research by a Portuguese team from ...

Molecular basis of age-related memory loss explained

Jul 22, 2014

From telephone numbers to foreign vocabulary, our brains hold a seemingly endless supply of information. However, as we are getting older, our ability to learn and remember new things declines. A team of ...

The neurochemistry of addiction

Jul 22, 2014

We've all heard the term "addictive personality," and many of us know individuals who are consistently more likely to take the extra drink or pill that puts them over the edge. But the specific balance of ...

User comments : 0