Scientists create mouse model of melanoma that generates hope for the use of targeted therapies

Mar 12, 2009

Researchers have developed a new mouse model that allows them to replicate normal pigment cells at the earliest stages of conversion to malignant skin cancer in humans. After testing the mouse with a combination of two drug therapies, the team found the treatment caused a statistically significant regression in cancer cell development.

The study was led by scientists at the University of California, San Francisco Helen Diller Family Comprehensive Center and the University of Vermont College of Medicine. The findings are published today (March 12, 2009) in the advance online edition of "Nature Genetics."

is a type of that develops from pigment cells called melanocytes. It is the most rapidly increasing cancer in the United States, according to the National Cancer Institute, with more than 62,000 people diagnosed with the disease in 2008. Of these, it is estimated that more than 8,000 will die within three to four years after a form of the recurrent disease spreads, or metastasizes, to other sites in the body.

"There has not been a major advance in the treatment of metastatic melanoma in the last 25 years," says Martin McMahon, PhD, senior co-author of the study and Efim Guzik Distinguished Professor in at the UCSF. "While other cancers are more common, it is the rate of increase and the often aggressive course of the disease that worries people who study melanoma."

By far the earliest and most common in melanoma is a mutation in an oncogene -- a gene that can cause normal cells to become -- called BRAF. For this study, scientists generated a mouse that allowed them to switch on that oncogene in melanocytes. The research team found that the benign lesions observed in a mouse expressing the gene are very similar to the benign sun-induced moles that often develop in humans and which also contain . Benign sun-induced moles generally never progress to malignancy, but such lesions are a potential precursor to cancer.

BRAF mutation is not the only genetic alteration observed in human melanoma. It is often found in combination with the silencing of PTEN, an important tumor-suppressor gene. By combining activation of the BRAF gene with deletion of the PTEN suppressor gene, the research team effectively modeled a combination of mutations seen in about 30 percent of all malignant melanomas. Under these circumstances the mice rapidly developed melanoma that displayed extensive metastasis.

Next, the researchers studied the impact of a combination of two different drugs on mouse melanoma. Each drug in its own unique way targeted the internal growth control circuits of . One drug is an experimental therapy supplied by Pfizer Inc., that inhibits the action of a protein called MEK that acts "directly downstream of BRAF," McMahon explained. Consequently, oncogenic BRAF gene generates a series of signals that support a high level of MEK activity. The other drug, Rapamycin, is an immunosuppressant drug already in clinical trials for cancer. As single agents, these drugs could prevent the onset of melanoma but, more importantly, when administered in combination to mice with pre-existing melanoma, there was a modest but statistically important level of regression in cancerous cells, according to McMahon.

"The study indicates that the we have built, based on the cardinal genetic features of the human disease, can be used to test responses to targeted therapeutics," says McMahon. "The signal failure to improve the prognosis of metastatic melanoma patients is likely to be improved on in years to come by the use of agents that target specific genetic mutations in the disease. Nevertheless I believe it will up be three to five years before the types of pre-clinical experiments we are doing right now will result in improved prognosis for patients with metastatic melanoma."

The scientists emphasized that although they engineered mice with very specific genetic alterations, it is possible that human melanoma is genetically more complex than the model they have generated. To address this, McMahon and Boris Bastian, MD, professor of dermatology and clinical professor of pathology at UCSF, are discussing the possibility of making additional modifications to the mouse model to make it more relevant to the genetic complexity found in human melanoma.

"Although the combination of drugs we administered might not be used in the clinic, our work suggests further avenues of research in a pre-clinical setting and in clinical trials," says McMahon. "In fact it is fair to say also that there are a number of drugs already in clinical trials that target the same pathways we are interested in."

Source: University of California - San Francisco

Explore further: Stress reaction may be in your dad's DNA, study finds

add to favorites email to friend print save as pdf

Related Stories

Genome-wide survey nets key melanoma gene

Feb 07, 2008

One might call it a tale of two melanocytes. Given the same genetic mutation, why does one melanocyte shut down growth and become a relatively benign mole, while another rages out of control and develops into deadly melanoma?

Inducing melanoma for cancer vaccine development

Mar 27, 2006

Cancer vaccines are being investigated in early-phase clinical trials around the world, with many of those trials recruiting patients with melanoma. Although tumor regressions have been seen in 10% to 20% of patients with ...

Recommended for you

Stress reaction may be in your dad's DNA, study finds

Nov 21, 2014

Stress in this generation could mean resilience in the next, a new study suggests. Male mice subjected to unpredictable stressors produced offspring that showed more flexible coping strategies when under ...

More genetic clues found in a severe food allergy

Nov 21, 2014

Scientists have identified four new genes associated with the severe food allergy eosinophilic esophagitis (EoE). Because the genes appear to have roles in other allergic diseases and in inflammation, the ...

Brain-dwelling worm in UK man's head sequenced

Nov 20, 2014

For the first time, the genome of a rarely seen tapeworm has been sequenced. The genetic information of this invasive parasite, which lived for four years in a UK resident's brain, offers new opportunities ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.