Variant form of amyloid beta hinders amyloidogenesis, development of Alzheimer's disease

Mar 12, 2009

Alzheimer's disease causes misfolding and aggregation of a protein fragment known as amyloid beta and its deposition as plaques in the brain. This process triggers a cascade of event that leads to neurodegeneration. A new study has found that the deadly transformation of amyloid beta into neurotoxic aggregates can be prevented through its interaction with a variant form of the amyloid beta itself. This opens up new prospects for therapies for the disease.

Alzheimer's disease is the most frequent form of in the elderly. It is usually sporadic, but a small proportion of cases are familial, linked to in the Aβ precursor protein (APP), presenilin 1 or presenilin 2 genes. The mutations identified previously increase aggregation and/or the production of Aβ, and have an autosomal dominant pattern of inheritance with complete penetrance, meaning that only one allele of the gene needs to be mutated in order to produce the disease.

The study by Di Fede and colleagues published in the March 13 issue of Science is based on the identification of a new APP mutation that has an autosomal recessive pattern of inheritance, meaning it causes disease only in the rare cases where both alleles of the gene have the defect - individuals with only one copy of the mutated allele remain healthy even into old age.

To investigate the mechanism by which the recessive mutation causes disease, the authors used cell models and synthetic Aβ peptides with and without the amino acid change induced by the genetic defect. Incubation of Aβ with the normal human sequence produced amyloid fibrils similar to those deposited in Alzheimer patients' brains. The peptide containing the novel mutation was more prone to amyloid formation than the normal peptide. However, most significantly, when the mutated and normal peptides were incubated together no amyloid formed by either the mutated or the normal form of Aβ. This is in line with the observation that heterozygous carriers do not develop the disease, even at a very late age.

Much remains to be clarified but these new data offer a basis for designing therapeutic strategies based on modified Aβ peptides for both the sporadic and genetic forms of Alzheimer's disease.

Source: Carlo Besta National Neurological Institute

Explore further: Lost memories might be able to be restored, new study indicates

add to favorites email to friend print save as pdf

Related Stories

Potential Alzheimer's disease drug target identified

Mar 14, 2008

In findings with the potential to provide a therapy for Alzheimer’s disease patients where none now exist, a researcher at the University of California, San Diego and colleagues have demonstrated in mice a way to reduce ...

Research illuminates link between Alzheimer's and stroke

Mar 17, 2008

For years, neuroscientists have known that the risk of Alzheimer’s disease is nearly doubled among people who have had a stroke. Now researchers at Columbia University Medical Center have found a process in the brain that ...

Alzheimer's prevention role discovered for prions

Jul 03, 2007

A role for prion proteins, the much debated agents of mad cow disease and vCJD, has been identified. It appears that the normal prions produced by the body help to prevent the plaques that build up in the brain to cause Alzheimer’s ...

Scientists develop a new way to target Alzheimer's disease

Dec 04, 2006

The pathological embrace between two proteins plays a key role in the development of Alzheimer's disease by triggering the formation of neuron-killing plaques of amyloid beta protein. Now a group of scientists at NYU School ...

Recommended for you

Researchers unlock mystery of skin's sensory abilities

Dec 19, 2014

Humans' ability to detect the direction of movement of stimuli in their sensory world is critical to survival. Much of this stimuli detection comes from sight and sound, but little is known about how the ...

Tackling neurotransmission precision

Dec 18, 2014

Behind all motor, sensory and memory functions, calcium ions are in the brain, making those functions possible. Yet neuroscientists do not entirely understand how fast calcium ions reach their targets inside ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.