Body clock regulates metabolism

Mar 12, 2009
Paolo Sassone-Corsi. Photo by Daniel A. Anderson.

(PhysOrg.com) -- UC Irvine researchers have discovered that circadian rhythms - our own body clock - regulate energy levels in cells. The findings have far-reaching implications, from providing greater insights into the bond between the body's day-night patterns and metabolism to creating new ways to treat cancer, diabetes, obesity and a host of related diseases.

In addition, Paolo Sassone-Corsi, Distinguished Professor and Chair of Pharmacology, and his colleagues found that the proteins involved with and are intrinsically linked and dependent upon each other. Their study appears online in Science Express.

"Our circadian rhythms and metabolism are closely partnered to ensure that cells function properly and remain healthy," Sassone-Corsi said. "This discovery opens a new window for us to understand how these two fundamental processes work together, and it can have a great impact on new treatments for diseases caused by cell energy deficiencies."

Circadian rhythms of 24 hours govern fundamental in almost all organisms. The circadian clocks are the essential time-tracking systems in our bodies that anticipate environmental changes and adapt to the appropriate time of day. Disruption of these rhythms can profoundly influence human health and has been linked to obesity, diabetes, insomnia, depression, coronary heart diseases and cancer.

Sassone-Corsi already had identified that the is an essential molecular gear of the circadian machinery and interacts with a protein, SIRT1, which senses cell energy levels and modulates aging and metabolism.

In this study, he and his colleagues show that CLOCK works in balance with SIRT1 to direct activity in a cell pathway by which metabolic proteins send signals called the NAD+ salvage pathway. In turn, a key protein in that pathway, NAMPT, helps control CLOCK levels, creating a tightly regulated codependency between our and metabolism.

"When the balance between these two vital processes is upset, normal cellular function can be disrupted," Sassone-Corsi said. "And this can lead to illness and disease."

The findings suggest that proper sleep and diet may help maintain or rebuild this balance, he said, and also help explain why lack of rest or disruption of normal sleep patterns can increase hunger, leading to obesity-related illnesses and accelerated aging.

The specific interaction between CLOCK and SIRT1 and the NAD+ salvage pathway also presents a starting point for drug development aimed at curbing cell dysfunction and death, thereby helping to solve major medical problems such cancer and diabetes.

Source: University of California - Irvine

Explore further: Fungus deadly to AIDS patients found to grow on trees

add to favorites email to friend print save as pdf

Related Stories

Circadian rhythm-metabolism link discovered

Jul 24, 2008

UC Irvine researchers have found a molecular link between circadian rhythms – our own body clock – and metabolism. The discovery reveals new possibilities for the treatment of diabetes, obesity and other ...

Molecular partnership controls daily rhythms, body metabolism

Nov 26, 2008

A research team led by Mitchell Lazar, MD, PhD, Director of the Institute for Diabetes, Obesity, and Metabolism at the University of Pennsylvania School of Medicine, has discovered a key molecular partnership that coordinates ...

Scientists find high-fat diet disrupts body clock

Nov 06, 2007

Our body’s 24-hour internal clock, or circadian clock, regulates the time we go to sleep, wake up and become hungry as well as the daily rhythms of many metabolic functions. The clock -- an ancient molecular machine found ...

Recommended for you

Some anti-inflammatory drugs affect more than their targets

10 hours ago

Researchers have discovered that three commonly used nonsteroidal anti-inflammatory drugs, or NSAIDs, alter the activity of enzymes within cell membranes. Their finding suggests that, if taken at higher-than-approved ...

Researchers discover new strategy germs use to invade cells

Aug 20, 2014

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

Aug 20, 2014

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

User comments : 0