The difference between eye cells is... sumo?

Mar 09, 2009

Researchers at the Johns Hopkins University School of Medicine and Washington University School of Medicine have identified a key to eye development — a protein that regulates how the light-sensing nerve cells in the retina form. While still far from the clinic, the latest results, published in the Jan. 29 issue of Neuron, could help scientists better understand how nerve cells develop.

"We've found a that seems to serve as a general switch for photoreceptor ," says Seth Blackshaw, Ph.D., an assistant professor in the Solomon H. Snyder Department of Neuroscience at Johns Hopkins. "This protein coordinates the activity of multiple proteins, acting like a conductor of an orchestra, instructing some factors to be more active and silencing others, and thus contributing to the development of light-sensitive of the eye."

Blackshaw's laboratory is trying to understand the steps necessary for developing light-sensitive to transition into one of two types: rod or . Any breakdown in the development of either type of cell can lead to impaired eyesight and, says Blackshaw, "the loss of cone cells in particular can lead to irreversible blindness." help us see in dim or dark light, and cone cells help us see bright light and color.

The research team was interested in how other genes that are active in the developing can act to promote the development of rod cells while suppressing the development of cone cells. So they took a closer look at the candidate protein Pias3, short for protein inhibitor of activated Stat3. Pias3 was known to alter gene control in cells outside of the eye. In these cells, Pias3 doesn't directly turn genes on and off, but instead adds a chemical tag — through a process called SUMOylation — to other proteins that do switch genes on and off. And, since Pias3 also is found in developing rod and cone and no other cells in the eye, the team hypothesized that it might act to help these cells "decide" which type to become.

To determine whether Pias3 orchestrates rod cell development, the researchers used mice. First, they engineered mice to make more Pias3 than normal in the eye and counted rod and cone cells. Those eyes contained more rod cells than eyes from mice containing a normal amount of Pias3 protein. When they reduced the amount of Pias3 in developing mouse eyes, they found that the cells that might otherwise have been rod cells instead developed into conelike cells. So the team concluded that Pias3 promotes rod cell development and suppresses cone cell development.

Next they wanted to know if Pias3 works the same in eye cells as it does in other cells, through SUMOylation. The team altered the Pias3 protein to disrupt its SUMOylation activity. They found that eyes containing altered Pias3 did not develop the correct number of rod cells, suggesting that Pias3's SUMOylation activity was the key to its ability to promote rod and suppress cone cell development in the eye. The team also found that Pias3 SUMOylates a protein, Nr2e3, already known to influence rod and cone cell development, and showed that SUMOylation is critical for its ability to repress cone development.

Blackshaw hopes that his basic research results will contribute to translational and clinical research to generate more treatment options for blinding conditions such as macular degeneration, which arise from rod and cone cell death. "Future treatments might be designed to pharmacologically manipulate Pias3-dependent SUMOylation and potentially convert photoreceptors to a cone fate, thus providing a treatment for forms of inherited blindness that selectively result in the death of cone photoreceptors," says Blackshaw.

More information: www.cell.com/neuron/

Source: Johns Hopkins Medical Institutions

Explore further: A single protein activates the machinery needed for axon growth and holds the axons together for collective extension

add to favorites email to friend print save as pdf

Related Stories

Lizard’s ‘third eye’ sheds light on how vision evolved

Mar 30, 2006

A primitive third eye found in many types of lizards, used to detect changes in light and dark and to regulate the production of certain hormones, may help explain how vision evolved and how signals are transmitted from the ...

First Look at the 'Birth' of a Retina Cell

May 05, 2006

Scientists at the University of Michigan Kellogg Eye Center have gained new insight into the way an embryonic retina cell develops and then commits itself to a specific role. They have observed a small window of opportunity ...

Progression of retinal disease linked to cell starvation

Dec 07, 2008

Rods and cones coexist peacefully in healthy retinas. Both types of cells occupy the same layer of tissue and send signals when they detect light, which is the first step in vision. The incurable eye disease Retinitis Pigmentosa, ...

Perfect Vision But Blind To Light

Jun 11, 2008

Mammals have two types of light-sensitive detectors in the retina. Known as rod and cone cells, they are both necessary to picture their environment. However, researchers at the Salk Institute for Biological ...

Color is in the eye of the beholder

Jul 03, 2007

In some regions of Central Europe, salad dressing is made preferably with pumpkin seed oil, which has a strong characteristic nutty flavor and striking color properties. Indeed, in a bottle it appears red, but it looks green ...

Researchers awaken vision cells in blind mice

May 21, 2007

University of Florida researchers used gene therapy to restore sight in mice with a form of hereditary blindness, a finding that has bearing on many of the most common blinding diseases.

Recommended for you

Damage to brain networks affects stroke recovery

21 hours ago

(Medical Xpress)—Initial results of an innovative study may significantly change how some patients are evaluated after a stroke, according to researchers at Washington University School of Medicine in St. ...

Dopamine leaves its mark in brain scans

22 hours ago

Researchers use functional magnetic resonance imaging (fMRI) to identify which areas of the brain are active during specific tasks. The method reveals areas of the brain, in which energy use and hence oxygen ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.