Will carbon nanotubes replace indium tin oxide?

Mar 09, 2009 By Miranda Marquit feature

(PhysOrg.com) -- Up until now, George Grüner tells PhysOrg.com, most of the studies regarding the properties - and uses - of carbon nanotubes have been restricted to the visible spectral range. “We, however, were interested in the properties in infrared range, in the window of the electromagnetic spectrum that is gaining increased prominence.”

Grüner, a professor at the University of California, Los Angeles, worked with Liangbing Hu and David S. Hecht to explore the infrared properties of made with carbon nanotubes. Their work demonstrated that carbon nanotubes are highly transparent in the . “This attribute would make such films ideal replacement for ,” Grüner says. Their work can be found in : “Infrared transparent thin films.”

“Finding transparent metals, which are ideal materials for use in such technologies as touch screens and , is not easy thing to do. Indium tin oxide, ITO, is predominantly used,” Grüner explains. However, ITO is rather brittle and the indium used in the alloy is becoming scarce. Scientists have discovered that films of carbon nanontubes are conductive and sufficiently transparent in the visible range, offering the potential to replace indium tin oxide.

While finding a replacement for indium tin oxide for applications that make use of is significant, Grüner and his colleagues were more interested in whether or not carbon nanotube thin films could be useful in the infrared range as well. “ITO is not much transparent in the infrared range,” Grüner says, “so there are some applications that wouldn’t be suited for.”

“A range of applications are making use of the infrared range,” Grüner continues. “ would benefit greatly, especially in terms of , cameras and projectors.” Additionally, making effective use of the infrared range could also lead to more efficient solar cells. “A significant fraction of the radiation from the sun is in the infrared range. As mentioned, ITO, used as electrodes in solar cells is not transparent at infrared, this leads to decreased efficiency. Carbon nanotube thin films are transparent in the infrared range, this could help developing more efficient solar energy.”

In order to test the abilities of the carbon nanotubes, Grüner and his students set up an experiment to direct infrared light through the thin film they had prepared. By measuring the intensity on the other side of the film, they were able to gauge its transparency. “It’s really pretty straightforward,” Grüner says. “The art is really making a well conducting film.”

Grüner points out that such films are more transparent than other materials showing good optical transparency is the visible spectral range. “That came as a bit of a surprise,” he acknowledges. “This opens up a number of interesting opportunities for a variety of applications,” Grüner says. “We are looking forward to seeing if what we have found will finds it’s way into useful applications.”

More information: Hu, Hecht and Grüner. “Infrared transparent carbon nanotube thin films,” Applied Physics Letters (2009). Available online: link.aip.org/link/?APPLAB/94/081103/1.

Copyright 2009 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Thinnest feasible nano-membrane produced

add to favorites email to friend print save as pdf

Related Stories

Perfecting a solar cell by adding imperfections

Jun 16, 2008

Nanotechnology is paving the way toward improved solar cells. New research shows that a film of carbon nanotubes may be able to replace two of the layers normally used in a solar cell, with improved performance at a lower ...

Graphene-based gadgets may be just years away

Apr 30, 2008

Researchers at The University of Manchester have produced tiny liquid crystal devices with electrodes made from graphene – an exciting development that could lead to computer and TV displays based on this ...

Recommended for you

Thinnest feasible nano-membrane produced

22 hours ago

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Alexa
not rated yet Mar 11, 2009
Graphene would give even better results, but currently it's difficult to handle.
Naveen_S
not rated yet Apr 02, 2009
True CNT are applicable for solar cells in infrared range but do we have efficient solar energy harnessing material in ninfrared range?

More news stories

'Exotic' material is like a switch when super thin

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Innovative strategy to facilitate organ repair

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

Thinnest feasible nano-membrane produced

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Continents may be a key feature of Super-Earths

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...

Under some LED bulbs whites aren't 'whiter than white'

For years, companies have been adding whiteners to laundry detergent, paints, plastics, paper and fabrics to make whites look "whiter than white," but now, with a switch away from incandescent and fluorescent lighting, different ...