Research team tests bedside monitoring of brain blood flow and metabolism in stroke victims

Mar 02, 2009

A University of Pennsylvania team has completed the first successful demonstration of a noninvasive optical device to monitor cerebral blood flow in patients with acute stroke, a leading cause of disability and death.

The ultimate goal of this research is to improve the management of patients with stroke and other brain disorders by providing continuous bedside monitoring of brain blood flow and metabolism.

"Our preliminary study demonstrates that blood flow changes can be reliably detected from stroke patients and also suggests that blood flow responses vary significantly from patient to patient," lead author Turgut Durduran said.

Ischemic stroke is the leading cause of morbidity and long-term disability in the United States, with projected cost of stroke care estimated at trillions of dollars during the next five decades. Stroke accounts for nearly 10 percent of deaths in the western hemisphere and about 5 percent of health-care costs.

The device being developed uses embedded optical probes that are placed over major cortical blood vessels in each hemisphere of the brain. The technology, diffuse correlation spectroscopy is a non-invasive system that uses lasers, photon-counting detectors, radio-frequency electronics, data processors and a computer monitor to display user-friendly images of functional information to physicians and nurses.

"What we have demonstrated is a working prototype of a non-invasive brain probe that uses diffusing light to detect physiological changes such as blood flow, blood-oxygen saturation and hemoglobin concentration to inform clinicians about their treatments," Arjun Yodh, professor of physics in the School of Arts and Sciences at Penn and principal investigator of the study, said.

The study is part of a $2.8 million, five-year Bioengineering Research Partnership grant from the National Institutes of Health and the University of Pennsylvania Comprehensive Neuroscience Center. BRP grants are awarded to interdisciplinary teams that combine basic, applied and translational research for important biological or medical problems. Yodh is joined by Rick Van Berg from the High Energy group of the Department of Physics in the School of Arts and Sciences and clinical collaborators John Detre, Joel Greenberg and Scott Kasner from the Department of Neurology in the School of Medicine at Penn.

"Stroke is caused by a reduction in blood flow to the brain, yet brain blood flow is rarely if ever measured in stroke patients because most existing methods to measure blood flow require costly instrumentation that is not portable," Detre said. "The ability to quantify tissue hemodynamics at the bedside would provide new opportunities both to learn more about blood-flow changes in patients with acute stroke and to optimize interventions to increase blood flow for individual patients, potentially even allowing these interventions to be administered before the onset of new neurological symptoms."

Source: University of Pennsylvania

Explore further: When attention is a deficit: How the brain switches strategies to find better solutions

add to favorites email to friend print save as pdf

Related Stories

Building a better course starts with the syllabus

Mar 17, 2015

Recent award-winning research from the University of Virginia's Teaching Resource Center shows that tailoring teaching to how students learn improves courses and creates long-lasting impact.

How rocket science may improve kidney dialysis

Mar 17, 2015

A team of researchers in the United Kingdom has found a way to redesign an artificial connection between an artery and vein, known as an Arterio-Venous Fistulae, which surgeons form in the arms of people ...

In pursuit of the perfectly animated cloud of smoke

Mar 12, 2015

Simulations of impressive landscapes and alien creatures have become commonplace, especially in fantasy and science fiction films. But simulations are also appearing in ever more medical and engineering applications. ...

Recommended for you

Disrupted biological clock linked to Alzheimer's disease

Mar 27, 2015

New research has identified some of the processes by which molecules associated with neurological diseases can disrupt the biological clock, interfere with sleep and activity patterns, and set the stage for ...

How the brain remembers pain

Mar 27, 2015

Scientists from Berne have discovered a mechanism, which is responsible for the chronification of pain in the brain. The results of their study suggest new strategies for the medical treatment of chronic ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.