New building design withstands earthquake simulation (Video)

Feb 26, 2009
Engineers constructed a four-story, 40-percent replica of a building in a laboratory to test their new technique for bracing high rise buildings in earthquake zones. They simulated an earthquake by pushing and pulling the building with hydraulics. Image: Remy Lequesne

(PhysOrg.com) -- Researchers at the University of Michigan simulated an off-the-charts earthquake in a laboratory to test their new technique for bracing high-rise concrete buildings. Their technique passed the test, withstanding more movement than an earthquake would typically demand.

The engineers used steel fiber-reinforced concrete to develop a better kind of coupling beam that requires less reinforcement and is easier to construct. Coupling beams connect the walls of high rises around openings such as those for doorways, windows, and elevator shafts. These necessary openings can weaken walls.

"We simulated an earthquake that is beyond the range of the maximum credible earthquake and our test was very successful. Our fiber-reinforced concrete beams behaved as well as we expected they would, which is better than the beams in use today," said James Wight, the Frank E. Richart Jr. Collegiate Professor in the U-M Department of Civil and Environmental Engineering.

This video is not supported by your browser at this time.
Engineers at the University of Michigan simulated an off-the-charts earthquake in a laboratory in December to test the strength of their new technique for bracing high-rise buildings.

Working with Wight on this project are Gustavo Parra-Montesinos, an associate professor in the Department of Civil and Environmental Engineering, and Remy Lequesne, a doctoral student in the same department.

Today, coupling beams are difficult to install and require intricate reinforcing bar skeletons. The U-M engineers created a simpler version made of a highly flowable, steel fiber-reinforced concrete.

"We took quite a bit of the cumbersome reinforcement out of the design and replaced it with steel fibers that can be added to the concrete while it's being mixed," Parra-Montesinos said. "Builders could use this fiber-reinforced concrete to build coupling beams that don't require as much reinforcement."

The engineers envision that their brand of beam would be cast off the construction site and then delivered. Nowadays, builders construct the beams, steel skeletons and all, bit by bit as they're building skyscrapers.

Their fiber-reinforced concrete has other benefits as well.

"The cracks that do occur are narrower because the fibers hold them together," Parra-Montesinos said.

The fibers are about one inch long and about the width of a needle.

The engineers performed their test in December on a 40-percent replica of a 4-story building wall that they built in the Structures Laboratory. They applied a peak load of 300,000 pounds against the building, pushing and pulling it with hydraulic actuators.

To quantify the results, they measured the building's drift, which is the motion at the top of the building compared with the motion at the base. In a large earthquake, a building might sustain a drift of 1 to 2 percent. The U-M structure easily withstood a drift of 3 percent.

The new beams could provide an easier, cheaper, stronger way to brace buildings in earthquake-prone areas.

The researchers are now working with a structural design firm to install the beams in several high rises soon to be under construction on the west coast.

Provided by University of Michigan

Explore further: Automakers hire rocket firm to probe air bag problems

add to favorites email to friend print save as pdf

Related Stories

Huge spring tides draw crowds to French Atlantic coast

6 hours ago

France kicked off nearly a month of exceptionally large spring tides Saturday, as tourists flocked to coastal areas to witness spectacularly high water levels ahead of the so-called "tide of the century" ...

Water in Oregon pipeline is tapped for electricity

8 hours ago

Lucid Energy has developed a renewable energy system that makes use of water moving through pipelines. The company's LucidPipe Power System converts pressure in water pipelines into electricity. They have ...

Arctic oil drillers face tighter US rules to stop spills

11 hours ago

Royal Dutch Shell Plc and any oil drilling company that prospects in the Arctic Ocean must boost safety practices to prevent spills in the frigid and often hostile waters or mitigate the impact, U.S. regulators proposed Friday.

Recommended for you

Florentine basilica gets high-tech physical

21 hours ago

Late last year, two University of California, San Diego students set out for Florence, Italy, to diagnose a patient that had no prior medical record, couldn't be poked or prodded in any way, and hadn't been ...

Radar sensors support parking management

22 hours ago

Siemens is researching the use of sensor networks in an advanced parking management solution that will hopefully counter the increasing parking space crisis in cities. The online magazine Pictures of the ...

SatisFactory project for more attractive factories launched

22 hours ago

Known as either "Industrial Revolution 4.0" or as "Industrial Renaissance", the need for visionary industrial approaches is widely recognized in the European Union. SatisFactory, a three-year research project funded by the ...

Life-saving train design is rarely used

Feb 25, 2015

(AP)—Nearly a decade ago, the U.S. secretary of transportation stood at the site of a horrendous commuter train crash near downtown Los Angeles and called for the adoption of a new train car design that ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

WolfAtTheDoor
not rated yet Feb 26, 2009
That's great, but it's kind of a small building.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.