An underwater drugstore?

Feb 26, 2009

No matter how sophisticated modern medicine becomes, common ailments like fungal infections can outrun the best of the world's antibiotics. In people with compromised immune systems (like premature babies, AIDS victims or those undergoing chemotherapy for cancer) the risk is very high: contracting a fungal infection can be deadly.

Now Tel Aviv University zoologists are diving deep into the sea to collect unique chemicals -- drugs of the future -- to beat unnecessary death by fungal infection. And their secret weapon is the common marine sponge.

Prof. Micha Ilan from the Department of Zoology at Tel Aviv University, who is heading the project, has already identified several alternative antibiotic candidates among the unique compounds that help a sponge fend off predators and infections. He and his graduate students are now identifying, isolating and purifying those that could be the super-antibiotics of the future.

The research group at TAU has found and isolated thousands bacteria and fungi, including a few hundred unique actinobacteria. So far, several tens hold promise as new drugs.

From the Sea to the Lab

"Resistance to antibiotics has become an unbelievably difficult challenge for the medical community," says Prof. Ilan. "Sponges are known for hosting an arsenal of compounds that could work to fight infections. We're now culturing huge amounts of microorganisms, such as actinobacteria, that live in symbiosis with marine sponges."

Marine sponges were recently made famous by the popular Nickelodeon TV cartoon SpongeBob SquarePants, which features a sea sponge who lives in a pineapple beneath the ocean. In real life, sea sponges are animals whose bodies consist of an outer thin layer of cells and an inner mass of cells and skeletal elements. The sedentary creatures don't really have the sort of adventurous life that the cartoon depicts.

Marine sponges can't move. Glued to the seafloor, they must rely on the flow of water through their bodies to collect food and to remove waste. This has led to a unique adaptive response to enemies and competition. Sponges don't have teeth, or shells, but protect themselves by building associations and partnerships with bacteria and fungi. Tel Aviv University is tapping into these relationships -- looking at the same chemicals that the sponge uses for defense to fight infection in humans.

Research Combines Several Fields of Study

Drug developers have known for decades about the potential goldmine of pharmaceuticals in the marine environment, particularly among sedentary life like marine sponges.

"One of the major problems is that these novel and natural compounds are found in very small quantities," Prof. Ilan explains. Collecting and extracting such large amounts of these unique chemicals would require huge quantities of animals to be sacrificed, a practice which is not in line with zoological conservationist values. So Prof. Ilan takes cultures from sea sponges with minimal damage to the natural environment. He then grows their symbionts and tests them in a "wet" laboratory. The methods Prof. Ilan has perfected can now be used by other scientists developing pharmaceuticals from marine sponges.

"Our research is unique in that we take both an agricultural and microbiological approach ― not found often in the drug discovery community," says Prof. Ilan, whose work is done in collaboration with the School of Chemistry's Prof. Yoel Kashman and Prof. Shmuel Carmeli.

Source: American Friends of Tel Aviv University

Explore further: Lemurs match scent of a friend to sound of her voice

add to favorites email to friend print save as pdf

Related Stories

Sneezing sponges suggest existence of sensory organ

Jan 14, 2014

(Phys.org) —When Danielle Ludeman decided to leave her hometown of Vancouver to study evolutionary biology at the University of Alberta, she knew she was in for a challenge that would help her discover ...

Dramatic long-term shift in Pacific ecosystem

Jan 09, 2014

The Hawaii Undersea Research Laboratory (HURL) at the University of Hawaiʻi at Mānoa School of Ocean and Earth Science and Technology (SOEST) has enabled scientists to determine that a long-term shift in ...

Norway's quest to discover all of its native species

Dec 19, 2013

More than a thousand new species –nearly one-quarter of which are new to science – have been discovered in Norway since a unique effort to find and name all of the country's species began in 2009.

Recommended for you

Lemurs match scent of a friend to sound of her voice

11 hours ago

Humans aren't alone in their ability to match a voice to a face—animals such as dogs, horses, crows and monkeys are able to recognize familiar individuals this way too, a growing body of research shows.

Chrono, the last piece of the circadian clock puzzle?

13 hours ago

All organisms, from mammals to fungi, have daily cycles controlled by a tightly regulated internal clock, called the circadian clock. The whole-body circadian clock, influenced by the exposure to light, dictates the wake-sleep ...

User comments : 0

More news stories

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...