Scientists pinpoint mechanism to increase magnetic response of ferromagnetic semiconductor

Feb 25, 2009
A ferromagnetic-semiconductor Europium oxide sample is subjected to high pressures in a diamond anvil cell. The electronic structure is simultaneously probed with circularly-polarized x-rays at the Advanced Photon Source, revealing the mechanism responsible for the strengthening of magnetic interactions under pressure.

( -- When squeezed, electrons increase their ability to move around. In compounds such as semiconductors and electrical insulators, such squeezing can dramatically change the electrical- and magnetic- properties.

Under ambient pressure, Europium oxide becomes ferromagnetic only below 69 Kelvin, limiting its applications. However, its magnetic ordering temperature is known to increase with pressure, reaching 200 Kelvin when squeezed by 150,000 atmospheres. The relevant changes in electronic structure responsible for such dramatic changes, however, remained elusive.

Now scientists at the U.S. Department of Energy's Argonne National Laboratory have manipulated electron mobility and pinpointed the mechanism controlling the strength of magnetic interactions- and hence the material's magnetic ordering temperature.

"EuO is a ferromagnetic semiconductor and is a material that can carry spin polarized currents, which is an integral element of future devices aimed at manipulating both the spin and the charge of electrons in new generation microelectronics," Argonne's Postdoctoral researcher Narcizo Souza-Neto said.

Using powerful X-rays from the Advanced Photon Source to probe the material's electronic structure under pressure, Souza-Neto and Argonne Physicist Daniel Haskel report in the February 6 issue of Physical Review Letters that localized, 100 percent polarized Eu 4f electrons become mobile under pressure by hybridizing with neighboring, extended electronic states. The increased mobility enhances the indirect magnetic coupling between Eu spins resulting in a three-fold increase in the ordering temperature.

While the need for large applied pressures may seem a burden for applications, large compressive strains can be generated at interfacial regions in EuO films by varying the mismatch in lattice parameter with selected substrates. By pinpointing the mechanism the research provides a road map for manipulating the ordering temperatures in this and related materials, e.g., through strain or chemical substitutions with the ultimate goal of reaching 300 Kelvin (room temperature).

"Manipulation of strain adds a new dimension to the design of novel devices based on injection, transport, and detection of high spin-polarized currents in magnetic/semiconductor hybrid structures", Haskel said.

More information: The paper, "Pressure-induced electronic mixing and enhancement of ferromagnetic ordering in EuX (X=O,S,Se,Te) magnetic semiconductors," is available online.

Source: Argonne National Laboratory

Explore further: X-rays probe LHC for cause of short circuit

add to favorites email to friend print save as pdf

Related Stories

Getting a critical edge on plutonium identification

Mar 24, 2015

A collaboration between NIST scientists and colleagues at Los Alamos National Laboratory (LANL) has resulted in a new kind of sensor that can be used to investigate the telltale isotopic composition of plutonium ...

Humble neutron is valuable tool in geology

Mar 16, 2015

With the ability to analyse the properties of the Earth's internal components to the atomic scale in conditions only found kilometres below our feet, recent studies have allowed geoscientists to study our ...

Will next-generation wearable sensors make us healthier?

Mar 10, 2015

There is certainly no shortage of headlines on wearable sensors these days. "A contact lens measures your glucose level." "New electronic tattoos could help monitor health during normal daily activities." A "headband can read your brainwaves." Numerous wearable sensors are cu ...

Quantum mechanic frequency filter for atomic clocks

Mar 09, 2015

Atomic clocks are the most accurate clocks in the world. In an atomic clock, electrons jumping from one orbit to another decides the clock's frequency. To get the electrons to jump, researchers shine light ...

Recommended for you

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.