Soil carbon storage is not always influenced by tillage practices

Feb 25, 2009

The practice of no-till has increased considerably during the past 20 yr. Soils under no-till usually host a more abundant and diverse biota and are less prone to erosion, water loss, and structural breakdown than tilled soils. Their organic matter content is also often increased and consequently, no-till is proposed as a measure to mitigate the increase in atmospheric carbon dioxide concentration. However, recent studies show that the effect of no-till on carbon sequestration can be variable depending on soil and climatic conditions, and nutrient management practices.

Researchers at Agriculture and Agri-Food Canada (Québec City) investigated the impacts of tillage (no-till vs. moldboard plowing) and N and P fertilization on carbon storage in a clay loam soil under cool and humid conditions in eastern Canada. Corn and soybean had been grown in a yearly rotation for 14 yr. The results of the study were reported in the 2009 January-February issue of the Soil Science Society of America Journal.

The authors concluded that their investigation indicates "…no-till enhanced soil organic carbon (SOC) content in the soil surface layer, but moldboard plowing resulted in greater SOC content near the bottom of the plow layer. When the entire soil profile (0-60 cm) was considered, both effects compensated each other which resulted in statistically equivalent SOC stocks for both tillage practices".

The effects of tillage and N fertilization varied depending on the soil depth considered. When considering only the top 20 cm of soil, the lowest C stocks were measured in the plowed soil with the highest N fertilizer level, whereas the highest SOC stocks were observed in the NT treatment with the highest N rate. The authors hypothesized that while N fertilization favored a greater residue accumulation in the top 20 cm of no-till soils, mixing of crop residue with soil particles and N fertilizer by tillage stimulated the mineralization of residue and native soil carbon.

However, when accounting for the whole soil profile, these variations in the surface 20 cm of soil were counterbalanced by significant SOC accumulation in the 20- to 30-cm soil layer of tilled soils, resulting in statistically equivalent SOC stocks for all tillage and N treatments. This study further emphasizes the importance of taking into account the whole soil profile when determining management effects on SOC storage, especially when full-inversion tillage is involved. The authors conclude that "only considering the top 20 cm of soil would have led us to an erroneous evaluation of the interactive effects of tillage and N fertilization on SOC stock".

More information: View the abstract at soil.scijournals.org/cgi/content/abstract/73/1/255 .

Source: Soil Science Society of America

Explore further: EPA staff says agency needs to be tough on smog

add to favorites email to friend print save as pdf

Related Stories

Keeping carbon in check

Mar 11, 2011

Researchers developed a comprehensive technique to monitor changes in organic carbon found in soil over large areas of land. The team of scientists, including Cesar Izaurralde and Tristram West at Pacific ...

A model to measure soil health in the era of bioenergy

Nov 19, 2008

One of the biggest threats to today's farmlands is the loss of soil organic carbon (SOC) and soil organic matter (SOM) from poor land-management practices. The presence of these materials is essential as they do everything ...

Before selling carbon credits, read this

May 18, 2007

Storing carbon in agricultural soils presents an immediate option to reduce atmospheric carbon dioxide and slow global warming. Farmers who adopt practices that store carbon in soil may be able to "sell" the stored carbon ...

Recommended for you

Shell files new plan to drill in Arctic

Aug 29, 2014

Royal Dutch Shell has submitted a new plan for drilling in the Arctic offshore Alaska, more than one year after halting its program following several embarrassing mishaps.

Reducing water scarcity possible by 2050

Aug 29, 2014

Water scarcity is not a problem just for the developing world. In California, legislators are currently proposing a $7.5 billion emergency water plan to their voters; and U.S. federal officials last year ...

User comments : 0