Commercial yeasts upgraded with an enzyme for biofuel production

Feb 24, 2009

Eckhard Boles, co-founder of the Swiss biofuel company Butalco GmbH and a professor at Goethe-University in Frankfurt, Germany, has discovered a new enzyme which teaches yeast cells to ferment xylose into ethanol. Xylose is an unused waste sugar in the cellulosic ethanol production process. The researchers have recently filed a patent application for their process.

In industrial fermentation processes, the yeast Saccharomyces cerevisiae is commonly used for ethanol production. Current bioethanol production technologies can use only parts of the plants, namely the storage sugars, like glucose, sucrose or starch. However, this technology is in competition with food and feed production. Eckhard Boles, co-founder of the Swiss biofuel company Butalco GmbH and a professor at Goethe-University in Frankfurt, Germany, has therefore searched for ways of teaching the microorganisms to convert waste sugars, xylose and arabinose, into ethanol. Now, Boles and his colleagues have succeeded in genetically modifying industrial yeast strains, thus producing ethanol from xylose in a single step. Having already succeeded in transforming arabinose into ethanol by genetically modified yeast strains, Boles and his team have now found an efficient way to convert most of the plants energy into biofuel.

"Up to now scientists considered it as unpromising to equip yeast with a bacterial enzyme capable of converting xylose", Boles explains, "because all attempts had failed". But he and his team continued trying by exploring the enormous amounts of information in current genetic databases. Step by step they took 12 enzymes from different bacterial organisms and inserted the enzymes into yeast cells. Finally they discovered a new enzyme that even worked in yeast cells from a commercial ethanol plant. In contrast to current cellulosic ethanol technologies the new enzyme can convert xylose in a single step and is not inhibited by other chemical compounds normally present within the yeast cells. The researchers have recently filed a patent application for their process. "This is a break-through in the commercialisation of cellulosic ethanol", comments Boles.

Boles says: "We have successfully demonstrated the conversion of waste sugars into ethanol. However, ethanol is not the best renewable biofuel. There are other alcohols with many more promising properties." Together with his company, Butalco GmbH, Boles is now constructing yeast strains to convert plant waste materials into biobutanol, which is being seen as a more superior alternative fuel than ethanol due to its more favourable chemical and physical properties.

Source: Goethe University Frankfurt

Explore further: Jumping hurdles in the RNA world

add to favorites email to friend print save as pdf

Related Stories

Life can survive on much less water than you might think

Nov 04, 2014

"Follow the water" has long been the mantra of our scientific search for alien life in the Solar System and beyond. We continue seeking conditions where water can remain liquid either on a world's surface ...

New approach to boosting yeast's ethanol yields

Oct 02, 2014

Yeast are commonly used to transform corn and other plant materials into biofuels such as ethanol. However, large concentrations of ethanol can be toxic to yeast, which has limited the production capacity ...

Recommended for you

Jumping hurdles in the RNA world

Nov 21, 2014

Astrobiologists have shown that the formation of RNA from prebiotic reactions may not be as problematic as scientists once thought.

New computer model sets new precedent in drug discovery

Nov 18, 2014

A major challenge faced by the pharmaceutical industry has been how to rationally design and select protein molecules to create effective biologic drug therapies while reducing unintended side effects - a challenge that has ...

Finding new ways to make drugs

Nov 18, 2014

Chemists have developed a revolutionary new way to manufacture natural chemicals and used it to assemble a scarce anti-inflammatory drug with potential to treat cancer and malaria.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.