Shape-shifting coral evade identification

Feb 24, 2009

The evolutionary tendency of corals to alter their skeletal structure makes it difficult to assign them to different species. Researchers writing in the open access journal BMC Evolutionary Biology have used genetic markers to examine coral groupings and investigate how these markers relate to alterations in shape, in the process discovering that our inaccurate picture of coral species is compromising our ability to conserve coral reefs.

Zac Forsman led a team of researchers from University of Hawaii at Manoa's Hawaii Institute of Marine Biology who carried out the molecular studies. He said, "Our study represents important progress towards understanding the evolution and biodiversity of corals, and provides a foundation for future work. As coral ecosystems are increasingly threatened, we need to understand how many groups exist that can interbreed rather than judging potential for extinction by just looking at groups according to their shape alone".

Skeletal shape is currently used to differentiate coral species. According to the authors, this can make them notoriously difficult to tell apart as shape can change independent of reproductive isolation or evolutionary divergence, the factors most commonly understood to define 'species'. By studying the genetic characteristics of corals at several regions of the genome, Forsman and his colleagues were able to confirm many morphological species groupings, while finding evidence that appearances are very deceiving in a few groups; some corals were genetically indistinguishable despite differing in size and shape, such as branching and massive corals, whereas some corals with similar appearance had deep genetic divergence. The authors said, "Our analysis of multiple molecular markers reveals previously unrecognised cryptic patterns of species diversity within the coral genus Porites. Our approach shows that morphological characters previously thought capable of delineating species must be re-examined to accurately understand patterns of evolution, and biodiversity in reef-building coral".

The authors' research will be very useful in aiding efforts to understand and preserve coral biodiversity. According to Forsman, "Currently used species definitions are likely to be misleading and confound attempts to identify, understand, and conserve coral biodiversity or to recognize its loss".

More information: Shape-shifting corals: Molecular markers show morphology is evolutionarily plastic in Porites, Zac H Forsman, Daniel J Barshis, Cynthia L Hunter and Robert J Toonen, BMC Evolutionary Biology (in press), www.biomedcentral.com/bmcevolbiol/

Source: BioMed Central

Explore further: Chickens to chili peppers: Scientists search for the first genetic engineers

add to favorites email to friend print save as pdf

Related Stories

Reef fish arrived in two waves

Apr 10, 2014

(Phys.org) —The world's reefs are hotbeds of biological diversity, including over 4,500 species of fish. A new study shows that the ancestors of these fish colonized reefs in two distinct waves, before ...

Dissolving the future of coral reefs

Apr 10, 2014

Swimming through the liquid turquoise waters off the island of Viti Levu, Fiji, I am surrounded by iridescent fish of all colors, schooling around healthy branching corals. With a slight movement of my fins ...

Recommended for you

Deadly human pathogen Cryptococcus fully sequenced

4 hours ago

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

User comments : 0

More news stories

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...