Shape-shifting coral evade identification

Feb 24, 2009

The evolutionary tendency of corals to alter their skeletal structure makes it difficult to assign them to different species. Researchers writing in the open access journal BMC Evolutionary Biology have used genetic markers to examine coral groupings and investigate how these markers relate to alterations in shape, in the process discovering that our inaccurate picture of coral species is compromising our ability to conserve coral reefs.

Zac Forsman led a team of researchers from University of Hawaii at Manoa's Hawaii Institute of Marine Biology who carried out the molecular studies. He said, "Our study represents important progress towards understanding the evolution and biodiversity of corals, and provides a foundation for future work. As coral ecosystems are increasingly threatened, we need to understand how many groups exist that can interbreed rather than judging potential for extinction by just looking at groups according to their shape alone".

Skeletal shape is currently used to differentiate coral species. According to the authors, this can make them notoriously difficult to tell apart as shape can change independent of reproductive isolation or evolutionary divergence, the factors most commonly understood to define 'species'. By studying the genetic characteristics of corals at several regions of the genome, Forsman and his colleagues were able to confirm many morphological species groupings, while finding evidence that appearances are very deceiving in a few groups; some corals were genetically indistinguishable despite differing in size and shape, such as branching and massive corals, whereas some corals with similar appearance had deep genetic divergence. The authors said, "Our analysis of multiple molecular markers reveals previously unrecognised cryptic patterns of species diversity within the coral genus Porites. Our approach shows that morphological characters previously thought capable of delineating species must be re-examined to accurately understand patterns of evolution, and biodiversity in reef-building coral".

The authors' research will be very useful in aiding efforts to understand and preserve coral biodiversity. According to Forsman, "Currently used species definitions are likely to be misleading and confound attempts to identify, understand, and conserve coral biodiversity or to recognize its loss".

More information: Shape-shifting corals: Molecular markers show morphology is evolutionarily plastic in Porites, Zac H Forsman, Daniel J Barshis, Cynthia L Hunter and Robert J Toonen, BMC Evolutionary Biology (in press), www.biomedcentral.com/bmcevolbiol/

Source: BioMed Central

Explore further: Bats may be mistaking wind turbines for trees

add to favorites email to friend print save as pdf

Related Stories

Poor fish harvests more frequent now off California coast

Sep 26, 2014

As a child in southern California, Ryan Rykaczewski spent a fair amount of time on his grandfather's boat, fishing with him off the Pacific coast near Los Angeles. At the time, he didn't think there was much rhyme or reason ...

Specialized species critical for reefs

Sep 15, 2014

One of Australia's leading coral reef ecologists fears that reef biodiversity may not provide the level of insurance for ecosystem survival that we once thought.

Sharks more abundant on healthy coral reefs

Sep 10, 2014

Sharks in no-fishing zones in the Great Barrier Reef (GBR) Marine Park are more abundant when the coral is healthy, according to a study published September 10, 2014 in the open-access journal PLOS ONE by Mario Espinoza from J ...

Recommended for you

Bats may be mistaking wind turbines for trees

26 minutes ago

Certain bats may be approaching wind turbines after mistaking them for trees, according to a study to be published in the Proceedings of the National Academy of Sciences.

Group: Wildlife populations down drastically

12 hours ago

Populations of about 3,000 species of wildlife around the world have plummeted far worse than previously thought, according to a new study by one of the world's biggest environmental groups.

Plants prepackage beneficial microbes in their seeds

12 hours ago

Plants have a symbiotic relationship with certain bacteria. These 'commensal' bacteria help the pants extract nutrients and defend against invaders – an important step in preventing pathogens from contaminating fruits and ...

MaxBin: Automated sorting through metagenomes

13 hours ago

Microbes – the single-celled organisms that dominate every ecosystem on Earth - have an amazing ability to feed on plant biomass and convert it into other chemical products. Tapping into this talent has ...

User comments : 0