Superconductivity: the new high critical temperature superconductors

Feb 24, 2009
Superconductivity: the new high critical temperature superconductors

(PhysOrg.com) -- The paper published in the Journal of the American Chemical Society (JACS) by a team led by professor Francesc Illas of the University of Barcelona's Department of Physical Chemistry and director of the Laboratory of Computational Materials Science (CMSL) will help to broaden our understanding of the nature of superconducting materials and of the origin of the superconductivity phenomenon in high critical temperature materials.

Superconductors are materials that conduct electrical current with zero resistance at low temperatures. Superconductivity was discovered in 1911, and the researchers in this area of solid state physics have been regular recipients of the Nobel Physics Prize: H. K. Onnes (1913), who discovered this extraordinary phenomenon; J. Bardeen, L. Cooper and R. Schrieffer (1972), for the BCS Theory of Superconductivity, which explains how electron pairs are formed (Cooper pairs) and how they conduct electrical current with zero resistance; J.C. Bednorz and K.A. Müller (1987), for their work with ceramic superconducting materials (copper oxides or cuprates) at temperatures above 35 K (-238 ºC) and beyond the boiling point of liquid nitrogen (-196 ºC).

“No theory has been able to account properly for high temperature superconductivity, although it seems to bear a strong relationship with the magnetic properties of materials,” explains Francesc Illas, who is also director of the UB’s Institute of Theoretical and Computational Chemistry (IQTCUB).

In 2008, the discovery of a new family of high critical temperature iron and arsenic superconductors (AsFe) marked a second major revolution in the world of superconductivity. The new compounds, which do not contain copper (Cu) but which have oxygen (O), fluor (F) or arsenic (As) and iron (Fe), will help scientists to solve some of the mysteries in the area of solid state physics.

But are these two high temperature superconductor families really so different? For Francesc Illas, “the main purpose of our work is to stress that these new materials are not as different from cuprates as originally thought. This point is fundamental for defining a unified approach to the two families of superconducting materials.”

According to the new study, the two families of superconducting materials share a similar electronic structure: specifically, Fe and As compounds are antiferromagnetic and exhibit a strong spin frustration, that is, strong magnetic interactions that make the interpretation of experiments difficult.

Another innovation mentioned in the article is the use of sophisticated techniques such as hybrid functionals for the study of electronic structure. “In cuprates,” says Illas, “the most commonly used methodologies are standard LDA (Local Density Approximation) and GGA (Generalized Gradient Approximation), which predict these systems to have a strong metallic character. However, experimental studies on the undoped parent compounds - superconductivity only appears when doping these materials - have shown that cuprates have insulating properties and are antiferromagnetic, but not metallic”. Therefore, the study of these systems will require more elaborate methods than the standard LDA and GGA methods to obtain a satisfactory description of their electronic structure and properties.

According to the experts, studying the electronic structure of the new FeAs based compounds using LDA and GGA also gives erroneous results, as in the case of cuprates. “These techniques,” says Illas, “are unable to give an accurate description of strongly correlated systems (cuprates, new superconductor families, and so on); these limitations have been frequently described in the literature.” More sophisticated approaches are necessary to describe the electronic structure and properties of these magnetic materials.

The discovery of high critical temperature superconductivity is one of the most remarkable chapters in modern science. It is a major breakthrough in developing new technologies and compounds in solid state physics and materials science. Physics experts dream of establishing a satisfactory theoretical model of the electronic structure in order to understand the formation of the superconducting phase, and then to be able to synthesize superconductors at room temperature. This objective seems attainable but not in a near future. For the time being, the most realistic approach is to try to understand the properties of undoped superconducting parent compounds and to progressively understand the effect of doping in the electronic structure of these materials, an area of research in which Illas’s group is one of the leaders in Spain.

Other participants in the study are Ibério de P. R. Moreira (UB) and Jacek C. Wojdel, currently at the ICMAB-CSIC. The study was carried out with the collaboration of the Barcelona Supercomputing Center (BSC) and the Catalonia Supercomputing Centre (CESCA).

More information: Chemical Bonding and Electronic and Magnetic Structure in LaOFeAs, Jacek C. Wojdeł, Ibrio de P. R. Moreira, Francesc Illas, Journal of the American Chemical Society 2009 131 (3), 906-907

Provided by University of Barcelona, Spain

Explore further: Using magnetic fields to understand high-temperature superconductivity

add to favorites email to friend print save as pdf

Related Stories

Getting a critical edge on plutonium identification

Mar 24, 2015

A collaboration between NIST scientists and colleagues at Los Alamos National Laboratory (LANL) has resulted in a new kind of sensor that can be used to investigate the telltale isotopic composition of plutonium ...

Recommended for you

New insights found in black hole collisions

11 hours ago

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

11 hours ago

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

14 hours ago

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

First glimpse inside a macroscopic quantum state

18 hours ago

In a recent study published in Physical Review Letters, the research group led by ICREA Prof at ICFO Morgan Mitchell has detected, for the first time, entanglement among individual photon pairs in a beam ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.