Metastasis-promoting protein identified; could provide a prognostic test or target for breast cancer

Feb 23, 2009

Tumors that are about to progress and metastasize go through a process also seen in normal embryonic development, known as the epithelial to mesenchymal transition (EMT). Tumor cells revert to a less-differentiated state, stop adhering to each another and become more mobile and prone to invade and proliferate. Now, researchers at Children's Hospital Boston show, for the first time, that a small protein called lipocalin 2 triggers the EMT in human breast cancer - and that the same protein, when measured in tissues and urine, can predict a cancer's invasiveness. Their findings were published online February 23 by the Proceedings of the National Academy of Sciences.

Researchers led by Marsha A. Moses, PhD, and Jiang Yang, PhD, of the Vascular Biology Program at Children's, induced human breast cancer cells to make large amounts of lipocalin 2, and showed that cell motility and invasiveness increased significantly. They then took cells from aggressive breast cancers and silenced lipocalin 2, and found that cell migration was significantly inhibited. When they transplanted human breast cancer cells into animals, those from tumors making lipocalin 2 were more locally invasive and more likely to metastasize to lymph nodes.

Further laboratory studies indicated that lipocalin 2 decreases the levels of estrogen receptor alpha, thereby reducing the cells' response to the hormone estrogen, which is associated with poor prognosis of breast cancer. Inhibiting the production of estrogen receptor alpha is also the mechanism that triggers the EMT pathway, the researchers show.

Finally, tissue samples, and even urine samples, from women with invasive breast cancer consistently showed elevated lipocalin 2 levels, suggesting that testing for lipocalin 2 may be a way of detecting cancer progression and the need for more aggressive treatment.

"Our study identifies a novel, additional player in the complex development of invasive breast cancer," says Moses, the Vascular Biology Program's interim director. "It suggests that this protein may represent a prognostic and/or therapeutic target for this devastating disease."

Source: Children's Hospital Boston

Explore further: Drug trial provides hope of new treatment for some oesophageal cancer patients

add to favorites email to friend print save as pdf

Related Stories

What I learned from debating science with trolls

Aug 20, 2014

I often like to discuss science online and I'm also rather partial to topics that promote lively discussion, such as climate change, crime statistics and (perhaps surprisingly) the big bang. This inevitably ...

Venom gets good buzz as potential cancer-fighter

Aug 11, 2014

Bee, snake or scorpion venom could form the basis of a new generation of cancer-fighting drugs, scientists will report here today. They have devised a method for targeting venom proteins specifically to malignant cells while ...

Inside the cell, an ocean of buffeting waves

Aug 14, 2014

Conventional wisdom holds that the cytoplasm of mammalian cells is a viscous fluid, with organelles and proteins suspended within it, jiggling against one another and drifting at random. However, a new biophysical ...

Recommended for you

Endogenous hormones improve breast cancer risk models

13 hours ago

(HealthDay)—Inclusion of endogenous hormones in prediction models improves prediction of invasive breast cancer risk in postmenopausal women, according to a study published online Aug. 18 in the Journal of ...

Novel oncogenic RET mutation found in small cell lung cancer

14 hours ago

For the first time an oncogenic somatic mutation at amino acid 918 in the RET (rearranged during transfection) protein has been identified in small cell lung cancer (SCLC) tumors and enforced expression of this mutation within ...

User comments : 0