Turbulence May Promote the Birth of Massive Stars

Feb 23, 2009

(PhysOrg.com) -- On long, dark winter nights, the constellation of Orion the Hunter dominates the sky. Within the Hunter's sword, the Orion Nebula swaddles a cluster of newborn stars called the Trapezium. These stars are young but powerful, each one shining with the brilliance of 100,000 Suns. They are also massive, containing 15 to 30 times as much material as the Sun.

Where did the Trapezium stars come from? The question is not as simple as it seems. When it comes to the theory of how massive stars form, the devil is in the details.

We know the basics: a cloud of cosmic gas draws itself together, growing denser and hotter until nuclear fusion ignites. But how does massive star formation begin? What determines how many stars form from a single cloud? New data from the Submillimeter Array (SMA), a joint project of the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics, is helping to answer these questions.

The SMA allows astronomers to examine the earliest stages of star formation, which are hidden within cocoons of dust and gas that block visible light. In a study just accepted for publication in The Astrophysical Journal, a team of astronomers at the Harvard-Smithsonian Center for Astrophysics (CfA) studied two cosmic cocoons located 15,000 light-years away in the constellation Serpens Cauda.

One region shows significant heating, indicating that massive new stars must have already formed. The other region has ample material to form massive stars, but shows little signs of star formation. It is at one of the earliest stages yet identified in the birth of stars.

"The SMA enables us to see the dust and gas in the cocoon with amazing details, and to probe the initial stages of massive star formation," said Smithsonian astronomer Qizhou Zhang, who is lead author on the report.

By comparing the SMA data to theoretical predictions, astronomers can test their understanding of how stars more massive than the Sun form.

In star formation, gravity pulls material inward and condenses it. Gravity also tends to fragment the contracting cloud into smaller and smaller pieces, which leads to a star cluster. Such fragmentation may also inhibit the formation of massive stars. As a result, some theorists propose that massive stars must form from collisions of smaller protostars.

Two forces counteract gravity and suppress fragmentation of the cloud: thermal pressure from the heat of protostars, and turbulence. This may allow massive stars to form directly from accretion. Previous work suggested that thermal pressure was the stronger influence, but the new SMA study finds that turbulence is more important, at least at the spatial scales examined.

"What's unique about these SMA observations is that we can check some of the hypotheses for massive star formation against the observations for the first time," said Zhang. "Unlike what has been assumed in theoretical models, we found that fragmentation is suppressed in these clouds, not by stellar heating but rather by turbulence."

The team already has planned future studies. "We have just started to understand the initial conditions in distant, massive star-forming regions. A large survey that we have launched with the SMA will, in the near future, reveal the nature of more of such objects," said Thushara Pillai of CfA, a co-author of the report.

More information: arxiv.org/abs/0902.0647

Provided by Harvard-Smithsonian Center for Astrophysics

Explore further: Young binary star system may form planets with weird and wild orbits

add to favorites email to friend print save as pdf

Related Stories

Security CTO to detail Android Fake ID flaw at Black Hat

10 hours ago

Where have you heard this before: A team of security researchers discover a security flaw in Android devices. This is, however, news. This time, experts are talking about a flaw that involves a widespread ...

Huge waves measured for first time in Arctic Ocean

10 hours ago

As the climate warms and sea ice retreats, the North is changing. An ice-covered expanse now has a season of increasingly open water which is predicted to extend across the whole Arctic Ocean before the middle ...

Underwater elephants

11 hours ago

In the high-tech world of science, researchers sometimes need to get back to basics. UC Santa Barbara's Douglas McCauley did just that to study the impacts of the bumphead parrotfish (Bolbometopon muricatum) on cor ...

Recommended for you

Evidence of a local hot bubble carved by a supernova

16 hours ago

I spent this past weekend backpacking in Rocky Mountain National Park, where although the snow-swept peaks and the dangerously close wildlife were staggering, the night sky stood in triumph. Without a fire, ...

Astronomers measure weight of galaxies, expansion of universe

Jul 30, 2014

Astronomers at the University of British Columbia have collaborated with international researchers to calculate the precise mass of the Milky Way and Andromeda galaxies, dispelling the notion that the two galaxies have similar ...

Mysterious molecules in space

Jul 29, 2014

Over the vast, empty reaches of interstellar space, countless small molecules tumble quietly though the cold vacuum. Forged in the fusion furnaces of ancient stars and ejected into space when those stars ...

Comet Jacques makes a 'questionable' appearance

Jul 28, 2014

What an awesome photo! Italian amateur astronomer Rolando Ligustri nailed it earlier today using a remote telescope in New Mexico and wide-field 4-inch (106 mm) refractor. Currently the brightest comet in ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

yep
1 / 5 (3) Feb 23, 2009
%u201CSit down before facts like a child, and be prepared to give up every preconceived notion, follow humbly wherever and to whatever abysses Nature leads, or you shall learn nothing.%u201D %u2014 T.H. Huxley
http://www.holosc...x49g6gsf&keywords=star formation#dest