Scientists Find Rare, Potent Antibody to HIV-1

Feb 23, 2009

(PhysOrg.com) -- Scientists at Duke University Medical Center have for the first time isolated an important antibody in human serum that could potentially play a key role in the design of an AIDS vaccine. The research appears as a highlighted feature online in the Journal of Virology.

"The 2F5-like antibody is one of the gold standards for what an HIV vaccine needs to induce, but no one had ever found it before circulating in the blood of infected patients," says Georgia Tomaras, PhD, associate professor of surgery, immunology and molecular genetics and microbiology in the Duke Human Vaccine Institute and the senior author of the study.

The 2F5 antibody is especially valuable because previous research has shown it can successfully neutralize 80 percent of transmitted HIV viruses.

Now that researchers have found the antibody in circulating blood, Tomaras says they might be able to find ways to duplicate or enhance it, thereby boosting the body's defense system.

2F5-like antibodies belong to a class of immune cells called broadly neutralizing antibodies, one of the body's most powerful responses to infection. Only a small fraction of patients with HIV make these antibodies and they typically appear many months after initial transmission of the virus - at a point when scientists feel it is too late to do much good.

Tomaras, working closely with lead author Xiaoying Shen, led a team of researchers who examined the antibodies present in 300 patients infected with HIV-1. They found only one patient who had developed 2F5-like antibodies, supporting the notion that they are, indeed, very rare.

Researchers discovered that the 2F5-like antibody was potent enough to block multiple strains of HIV in the laboratory, but researchers say they are not entirely clear if it played any part in controlling the virus in the patient who carried it.

The scientists were also struck by another discovery: The 2F5-like antibodies arose concurrently with particular autoantibodies that may be a clue as to why these antibodies developed in this person and not in others.

"Tomaras and her team have created the opportunity for us to isolate and study the immune cells that enabled the production of this very rare antibody," says Barton Haynes, M.D., director of the Duke Human Vaccine Institute. "Our goal will be to understand how to trigger these cells to routinely make these kinds of antibodies before infection occurs."

The research was funded by the National Institutes of Health and the Duke Center for AIDS Research.

Provided by Duke University

Explore further: HIV+ women respond well to HPV vaccine

add to favorites email to friend print save as pdf

Related Stories

A new weapon in the war against superbugs

Dec 02, 2013

In the arms race between bacteria and modern medicine, bacteria have gained an edge. In recent decades, bacterial resistance to antibiotics has developed faster than the production of new antibiotics, making ...

Designing more effective anti-HIV antibodies

Nov 19, 2010

Although people infected with HIV produce many antibodies against the protein encapsulating the virus, most of these antibodies are strangely ineffective at fighting the disease. A new study suggests why some of the most ...

Recommended for you

HIV+ women respond well to HPV vaccine

3 hours ago

HIV-positive women respond well to a vaccine against the human papillomavirus (HPV), even when their immune system is struggling, according to newly published results of an international clinical trial. The study's findings ...

HIV battle must focus on hard-hit streets, paper argues

Apr 10, 2014

In U.S. cities, it's not just what you do, but also your address that can determine whether you will get HIV and whether you will survive. A new paper in the American Journal of Public Health illustrates the ef ...

User comments : 0

More news stories

How kids' brain structures grow as memory develops

Our ability to store memories improves during childhood, associated with structural changes in the hippocampus and its connections with prefrontal and parietal cortices. New research from UC Davis is exploring ...

Gate for bacterial toxins found

Prof. Dr. Dr. Klaus Aktories and Dr. Panagiotis Papatheodorou from the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg have discovered the receptor responsible ...

Adventurous bacteria

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...