The brain's reserve cells can be activated after stroke

Feb 23, 2009

(PhysOrg.com) -- Scientists at the Swedish medical university Karolinska Institutet have found a way of activating the neuronal reserves in the brains of mice by switching off the signal that inhibits the formation of new nerve cells. The study is presented in the online edition of the scientific journal Nature Neuroscience.

"So far, this is just basic research of no immediate practical significance, but the results are very exciting nonetheless," says Professor Jonas Frisén at the Department of Cell and Molecular Biology, who led the study.

New nerve cells are formed from stem cells in specific areas of the human brain. This process increases after a stroke, something that might explain the recovery that is often observed in patients, particularly in the first year following the onset of illness. In the present study, the scientists have demonstrated how a type of cell that does not give rise to new cells in the healthy brain is activated after a stroke in laboratory animals.

In addition to the stem cells that are normally active, there is therefore also a kind of reserve stock of cells the can be activated when demand increases. The team have identified the molecular mechanisms that control the activation of these cells, and shown that it is possible to increase the formation of new nerve cells in healthy mice by switching off the so-called Notch signalling pathway, which inhibits the creation of new nerve cells.

More information: ‘Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke’, Marie Carlén, Konstantinos Meletis, Christian Göritz, Vladimer Darsalia, Emma Evergren, Kenji Tanigaki, Mario Amendola, Fanie Barnabé-Heider, Maggie S Y Yeung, Luigi Naldini, Tasuku Honjo, Zaal Kokaia, Oleg Shupliakov, Robert M Cassidy, Olle Lindvall & Jonas Frisén, Nature Neuroscience AOP, 22 February 2009, doi 10.1038/nn.2268.

Provided by Karolinska Institutet

Explore further: Researchers "smell" new receptors that could underlie the many actions of the anesthetic drug ketamine

Related Stories

Protein mimic shows promise as tissue engineering glue

Mar 16, 2015

Researchers have demonstrated the potential of a "synthetic protein mimic" to promote the adhesion of brain cells in a laboratory setting. This feat could help overcome a major challenge in nerve tissue engineering.

A single-cell breakthrough

Mar 18, 2015

The human gut is a remarkable thing. Every week the intestines regenerate a new lining, sloughing off the equivalent surface area of a studio apartment and refurbishing it with new cells. For decades, researchers ...

Measuring the pulse of trees

Mar 16, 2015

I read many years ago that if you wanted a tree to recognise you, you would need to sit quietly at its base for a week. Very Zen!

Recommended for you

Computer model predicts how our livers will store fat

6 hours ago

As part of an effort to understand how an experimental drug for atherosclerosis causes the build-up of fat in the liver, scientists have developed a computer model that can predict how the rate at which liver stores fat in ...

Researchers identify "beige" fat-burning cells in humans

14 hours ago

For the first time, a research team, led by a UC San Francisco biologist, has isolated energy-burning "beige" fat from adult humans, which is known to be able to convert unhealthy white fat into healthy brown ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.