Researchers find genes important to sleep

Feb 22, 2009

For many animals, sleep is a risk: foraging for food, mingling with mates and guarding against predators just aren't possible while snoozing.

How, then, has this seemingly life-threatening behavior remained constant among various species of animals?

A new study by scientists at North Carolina State University shows that the fruit fly is genetically wired to sleep, although the sleep comes in widely variable amounts and patterns. Learning more about the genetics of sleep in model animals could lead to advances in understanding human sleep and how sleep loss affects the human condition.

The study, published online in Nature Genetics, examined the sleep and activity patterns of 40 different wild-derived lines of Drosophila melanogaster - one of the model animals used in scientific studies. It found that, on average, male fruit flies slept longer than females; males slept more during the day than females; and males were more active when awake than females. Females, in turn, tended to have more frequent bouts of sleep, and thus were disrupted more from sleep, than males.

The study identified almost 1,700 genes associated with the variability of sleep in fruit flies, say study authors Dr. Trudy Mackay, William Neal Reynolds and Distinguished University Professor of Genetics and Entomology, and Dr. Susan Harbison, a post-doctoral researcher in Mackay's lab. Many of these genes were not previously known to affect sleep.

Fruit flies within each of the 40 lines were homozygous, or exactly the same genetically, but the lines were completely different from one another, Mackay says. Small glass tubes containing one fruit fly and some food were placed in a machine that uses infrared sensors to monitor the minute-by-minute activity of the flies. If at least five minutes passed without any fly activity, it was calculated as sleep.

The study predicted that certain important genes would affect sleep duration. Independent verification with mutations in those genes did indeed have an effect on how long fruit flies slept. The study also discovered teams of genes that appeared to act together to affect some portion of sleep.

"We're starting to get a glimmer of how groups of correlated genes are overrepresented in different traits, and we now know more about how traits are associated with each other at the molecular level," Mackay says.

More information: "Co-regulated transcriptional networks contribute to natural genetic variation in Drosophila sleep", Authors: Susan T. Harbison, Mary Anna Carbone, Julien F. Ayroles, Eric A. Stone, Richard F. Lyman and Trudy F.C. Mackay, North Carolina State University, Published: Online Feb. 22, 2009, in Nature Genetics

Source: North Carolina State University

Explore further: New gene technique identifies previously hidden causes of brain malformation

add to favorites email to friend print save as pdf

Related Stories

Study find electricity in biological clock

Oct 04, 2012

Biologists from New York University have uncovered new ways our biological clock's neurons use electrical activity to help keep behavioral rhythms in order. The findings, which appear in the journal Current Biology, also p ...

Biologists identify genes regulating sleeping and feeding

Jun 10, 2010

In the quest to better understand how the brain chooses between competing behaviors necessary for survival, scientists at the University of Massachusetts Medical School and New York University have isolated two genes in the ...

Genetic code of the deadly tsetse fly unraveled

Apr 24, 2014

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Recommended for you

Gene therapy protects mice from heart condition

22 hours ago

A new gene therapy developed by researchers at the University of Missouri School of Medicine has been shown to protect mice from a life-threatening heart condition caused by muscular dystrophy.

Study finds crucial step in DNA repair

Aug 18, 2014

Scientists at Washington State University have identified a crucial step in DNA repair that could lead to targeted gene therapy for hereditary diseases such as "children of the moon" and a common form of ...

User comments : 0