Cosmological simulations key to understanding the universe

Feb 17, 2009

Tiziana Di Matteo, associate professor of physics at Carnegie Mellon University is harnessing the power of supercomputing to recreate how galaxies are born, how they develop over time and, ultimately, how they collapse.

Di Matteo presented an overview of her cosmological simulations as part of the "Big, Small, and Everything in Between: Simulating Our World Using Scientific Computing" session at the 2009 American Association for the Advancement of Science (AAAS) Annual Meeting in Chicago.

Working with machines at Carnegie Mellon's Bruce and Astrid McWilliams Center for Cosmology and the Pittsburgh Supercomputing Center, Di Matteo crafts computer simulations to better understand the physics of black holes and the role they play in galaxy formation. The superior computing power available using computers like the Cray XT3 system allow Di Matteo to input the extensive calculations necessary to incorporate black hole physics into such simulations. In fact, such computing power has enabled Di Matteo to complete the most detailed and accurate recreation of the evolution of the universe to date.

The simulation begins with conditions seen at the birth of the universe as evidenced by observed cosmic microwave background radiation. Seeded with a quarter of a billion particles that represent everyday measurable matter, and factoring in gravity exerted by dark matter and other forces associated with various cosmic phenomena, including cooling gas, growing black holes and exploding stars, the simulation progresses, providing snapshots of galaxy development in frames of half a million years each. Strung together, the frames create a movie of cosmic evolution over the past 14 billion years. The high-resolution afforded to the researchers by the state-of-the-art computers allows them to zoom into a particular event in the galaxies formation, like the formation of a black hole.

Using data from such simulations, Di Matteo and colleagues have been able to get a better understanding of the role black holes play in galaxy regulation. The researchers hope that the theoretical simulations can be used to aid observational astrophysics by helping to predict what the next-generation telescopes should see as they peer back to the Big Bang, and by providing guidance to observational astrophysicists as they look to locate the earliest cosmic events and untangle the origins of the universe.

Source: Carnegie Mellon University

Explore further: Eta Carinae: Our Neighboring Superstars

add to favorites email to friend print save as pdf

Related Stories

When does a physical system compute?

Jul 11, 2014

Can physical systems from bacteria to black holes act as a computer? A University of York computer scientist and colleagues from the universities of Oxford and Leeds address this question in newly published research which ...

Recommended for you

Evidence for supernovas near Earth

2 hours ago

Once every 50 years, more or less, a massive star explodes somewhere in the Milky Way. The resulting blast is terrifyingly powerful, pumping out more energy in a split second than the sun emits in a million ...

What lit up the universe?

9 hours ago

New research from UCL shows we will soon uncover the origin of the ultraviolet light that bathes the cosmos, helping scientists understand how galaxies were built.

Eta Carinae: Our Neighboring Superstars

17 hours ago

(Phys.org) —The Eta Carinae star system does not lack for superlatives. Not only does it contain one of the biggest and brightest stars in our galaxy, weighing at least 90 times the mass of the Sun, it ...

Best view yet of merging galaxies in distant universe

21 hours ago

Using the Atacama Large Millimeter/submillimeter Array, and other telescopes, an international team of astronomers has obtained the best view yet of a collision that took place between two galaxies when the ...

Image: Hubble stirs up galactic soup

Aug 25, 2014

(Phys.org) —This new NASA/ESA Hubble Space Telescope image shows a whole host of colorful and differently shaped galaxies; some bright and nearby, some fuzzy, and some so far from us they appear as small ...

User comments : 0