Cosmological simulations key to understanding the universe

Feb 17, 2009

Tiziana Di Matteo, associate professor of physics at Carnegie Mellon University is harnessing the power of supercomputing to recreate how galaxies are born, how they develop over time and, ultimately, how they collapse.

Di Matteo presented an overview of her cosmological simulations as part of the "Big, Small, and Everything in Between: Simulating Our World Using Scientific Computing" session at the 2009 American Association for the Advancement of Science (AAAS) Annual Meeting in Chicago.

Working with machines at Carnegie Mellon's Bruce and Astrid McWilliams Center for Cosmology and the Pittsburgh Supercomputing Center, Di Matteo crafts computer simulations to better understand the physics of black holes and the role they play in galaxy formation. The superior computing power available using computers like the Cray XT3 system allow Di Matteo to input the extensive calculations necessary to incorporate black hole physics into such simulations. In fact, such computing power has enabled Di Matteo to complete the most detailed and accurate recreation of the evolution of the universe to date.

The simulation begins with conditions seen at the birth of the universe as evidenced by observed cosmic microwave background radiation. Seeded with a quarter of a billion particles that represent everyday measurable matter, and factoring in gravity exerted by dark matter and other forces associated with various cosmic phenomena, including cooling gas, growing black holes and exploding stars, the simulation progresses, providing snapshots of galaxy development in frames of half a million years each. Strung together, the frames create a movie of cosmic evolution over the past 14 billion years. The high-resolution afforded to the researchers by the state-of-the-art computers allows them to zoom into a particular event in the galaxies formation, like the formation of a black hole.

Using data from such simulations, Di Matteo and colleagues have been able to get a better understanding of the role black holes play in galaxy regulation. The researchers hope that the theoretical simulations can be used to aid observational astrophysics by helping to predict what the next-generation telescopes should see as they peer back to the Big Bang, and by providing guidance to observational astrophysicists as they look to locate the earliest cosmic events and untangle the origins of the universe.

Source: Carnegie Mellon University

Explore further: Planet-forming lifeline discovered in a binary star system

add to favorites email to friend print save as pdf

Related Stories

How myths and tabloids feed on anomalies in science

Oct 02, 2014

There are many misconceptions about science, including how science advances. One half-truth is that unexpected research findings produce crises, leading to new theories that overturn previous scientific knowledge.

Simulations reveal an unusual death for ancient stars

Sep 29, 2014

(Phys.org) —Certain primordial stars—those 55,000 and 56,000 times the mass of our Sun, or solar masses—may have died unusually. In death, these objects—among the Universe's first-generation of stars—would ...

Seeking proof for the no-hair theorem

Sep 09, 2014

According to general relativity, a black hole has three measurable properties: mass, rotation (angular momentum), and charge. That's it. If you know those three things, you know all there is to know about ...

Recommended for you

Image: Hubble views the whirling disk of NGC 4526

3 minutes ago

This neat little galaxy is known as NGC 4526. Its dark lanes of dust and bright diffuse glow make the galaxy appear to hang like a halo in the emptiness of space in this image from the NASA/ESA Hubble Space ...

Planet-forming lifeline discovered in a binary star system

18 hours ago

Scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) have detected a streamer of dust and gas flowing from a massive outer disk toward the inner reaches of a binary star system. This never-before-seen ...

Astronomy & Astrophysics: Planck 2013 results

22 hours ago

Astronomy & Astrophysics is publishing a special feature of 31 articles describing the data gathered by Planck over 15 months of observations and released by ESA and the Planck Collaboration in March 2013. ...

Existence of a group of 'quiet' quasars confirmed

Oct 29, 2014

Aeons ago, the universe was different: mergers of galaxies were common and gigantic black holes with masses equivalent to billions of times that of the Sun formed in their nuclei. As they captured the surrounding ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.