Research suggests pollution-related asthma may start in the womb

Feb 14, 2009

Children born in areas with increased traffic-related pollution may be at greater risk of developing asthma due to genetic changes acquired in the womb, according to new research from the University of Cincinnati (UC) and Columbia University Mailman School of Public Health. The team reports its findings in the Feb. 16, 2009, issue of PLoS ONE.

In a study of umbilical cord blood from New York City children, researchers have discovered evidence of a possible new biomarker—an epigenetic alteration in the gene ACSL3—associated with prenatal exposure to polycyclic aromatic hydrocarbons (PAHs). These chemical compounds are created as byproducts of incomplete combustion from carbon-containing fuels, resulting in high levels in heavy-traffic areas. Exposure to PAHs has been linked to diseases such as cancer and childhood asthma.

Researchers say this finding provides a potential clue for predicting environmentally related asthma in children—particularly those born to mothers who live in high-traffic areas like Northern Manhattan and South Bronx when pregnant.

This is the first study to examine the effects of prenatal ambient air pollutant exposure on epigenetic changes linked to asthma. Epigenetic changes may disrupt the normal functioning of genes by affecting their expression but do not cause structural changes or mutations in the genes.

For this study, UC researchers teamed with Columbia's Mailman School of Public Health to study the relationship between prenatal PAH exposure and childhood asthma, hypothesizing that transplacental exposure to PAHs could "reprogram" fetal genes and lead to airway inflammation or asthma during childhood. Epigenetic reprogramming is the result of an organism's genes interacting with the environment.

"Our data support the concept that environmental exposures can interact with genes during key developmental periods to trigger disease onset later in life, and that tissues are being reprogrammed to become abnormal later," says Shuk-mei Ho, PhD, senior author of the paper, chair of UC's Department of Environmental Health and the director of the Center for Environmental Genetics.

"This research is aimed at detecting early signs of asthma risk so that we can better prevent this chronic disease that affects as many as 25 percent of children in Northern Manhattan and elsewhere," adds Frederica Perera, DrPH, professor of environmental health sciences and director of the Columbia Center for Children's Environmental Health (CCCEH) at the Mailman School of Public Health and co- first author on the paper.

Using biological specimens from the CCCEH birth cohort of mothers and children living in Northern Manhattan and the South Bronx, UC scientists analyzed umbilical cord white blood cell samples from 56 children for epigenetic alterations related to prenatal PAH exposure. (The mothers' exposure to PAHs was monitored during pregnancy using backpack air monitors).

The researchers found a significant association between changes in ACSL3 methylation—a gene expressed in the lung—and maternal PAH exposure. ACSL3 also was associated with a parental report of asthma symptoms in the children prior to age 5.

With confirmation in further studies, researchers say changes in the ACSL3 gene could serve as a novel biomarker for early diagnosis of pollution-related asthma.

"This study provides a blueprint for the discovery of epigenetic biomarkers relevant to other investigations of exposure-disease relationships in birth cohorts," says Wan-yee Tang, PhD, a UC research scientist and a co-first author on the paper.

"Understanding early predictors of asthma is an important area of investigation," adds Rachel Miller, MD, director of the CCCEH asthma project and study co-author, "because they represent potential clinical targets for intervention."

Source: University of Cincinnati

Explore further: Muscular dystrophy: Repair the muscles, not the genetic defect

add to favorites email to friend print save as pdf

Related Stories

China demand to fuel Hong Kong iPhone grey market

3 hours ago

Wealthy mainland Chinese looking to buy the new iPhone 6 next week could expect to pay an eye-watering US$2,500 for the handsets in Hong Kong, following Apple's decision to delay the launch in China.

Netflix sets sights on European screens

3 hours ago

US online streaming giant Netflix will launch the second phase of its European expansion plan on Monday as it sets about seducing French viewers with a "House of Cards"-style drama set in Marseille.

Prosecutors target credit card thieves overseas

17 hours ago

Criminals from around the world buy and sell stolen credit card information with ease in today's digital age. But if they commit their crime entirely outside the United States, they may be hard to prosecute.

SpaceX's next cargo launch set for Sept 20

17 hours ago

SpaceX's next unmanned cargo trip to restock supplies at the International Space Station is scheduled for September 20, the US space agency said Friday.

Recommended for you

Cellular protein may be key to longevity

9 hours ago

Researchers have found that levels of a regulatory protein called ATF4, and the corresponding levels of the molecules whose expression it controls, are elevated in the livers of mice exposed to multiple interventions ...

Gut bacteria tire out T cells

12 hours ago

Leaky intestines may cripple bacteria-fighting immune cells in patients with a rare hereditary disease, according to a study by researchers in Lausanne, Switzerland. The study, published in The Journal of Experimental Me ...

T-bet tackles hepatitis

12 hours ago

A single protein may tip the balance between ridding the body of a dangerous virus and enduring life-long chronic infection, according to a report appearing in The Journal of Experimental Medicine.

User comments : 0