Stem cell research uncovers mechanism for type 2 diabetes

Feb 12, 2009

Taking clues from their stem cell research, investigators at the University of California San Diego (UC San Diego) and Burnham Institute for Medical Research (Burnham) have discovered that a signaling pathway involved in normal pancreatic development is also associated with type 2 diabetes. Their findings, published online January 9 in Experimental Diabetes Research, could provide a potential new target for therapy.

Pamela Itkin-Ansari, Ph.D., assistant adjunct professor at the UC San Diego School of Medicine and Burnham; Fred Levine, M.D., Ph.D., professor and director of the Sanford Children's Health Research Center at Burnham, and colleagues showed that the Wnt signaling pathway is up-regulated in insulin producing cells of pancreases from adults with type 2 diabetes.

"It is now clear that progenitor cells, with the capacity to become insulin producing cells, reside in the adult pancreas," said Dr. Itkin-Ansari. "The key to harnessing those cells to treat diabetes is to understand the signaling pathways that are active in the pancreas under both normal and disease conditions. In the course of that research we found that Wnt signaling activity, which plays a critical role in the development of the pancreas, re-emerges in type 2 diabetes."

The Wnt signaling pathway - a series of protein interactions that control several genes -plays a role in normal development, as well as cancer, in many tissues. In this study, the scientists compared the expression of different proteins in the Wnt pathway in the pancreas from adults with type 2 diabetes and those from healthy individuals. The researchers discovered that cells from those without the disease had low levels of beta-catenin, a protein that enters cell nuclei and activates certain genes. Beta cells from people with type 2 diabetes had increased levels of the protein.

Activation of the Wnt pathway also up-regulates the expression of c-myc, which has been implicated in the destruction of insulin-producing beta cells. Significantly, Wnt signaling was also apparent in obese mice well before they developed symptoms, indicating that Wnt may be an important factor leading to Type 2 diabetes.

More information: The publication can be found at www.hindawi.com/GetArticle.asp… =10.1155/2008/728763

Source: Burnham Institute

Explore further: Sri Lanka celebrates two years without malaria

add to favorites email to friend print save as pdf

Related Stories

Tracing water channels in cell surface receptors

Sep 09, 2014

G protein-coupled receptors (GPCRs) are the largest class of cell surface receptors in our cells, involved in signal transmission across the cell membrane. One of the biggest questions is how a signal recognized at the extracellular ...

Inner workings of a cellular nanomotor revealed

Feb 05, 2014

Our cells produce thousands of proteins but more than one-third of these proteins can fulfill their function only after migrating to the outside of the cell. While it is known that protein migration occurs ...

Recommended for you

Sri Lanka celebrates two years without malaria

1 hour ago

Sri Lanka has not reported a local case of malaria since October 2012, according to the Sri Lankan Anti-Malarial Campaign. If it can remain malaria-free for one more year, the country will be eligible to apply to the World ...

Poll: Many doubt hospitals can handle Ebola

5 hours ago

A new poll finds most Americans have some confidence that the U.S. health care system will prevent Ebola from spreading in this country, but they're not so sure their local hospital can safely handle a patient.

Number of Ebola cases nears 10,000

5 hours ago

The number of people with Ebola is set to hit 10,000 in West Africa, the World Health Organization said, as the scramble to find a cure gathered pace.

'Breath test' shows promise for diagnosing fungal pneumonia

5 hours ago

Many different microbes can cause pneumonia, and treatment may be delayed or off target if doctors cannot tell which bug is the culprit. A novel approach—analyzing a patient's breath for key chemical compounds made by the ...

User comments : 0