Researchers Demonstrate 'Quantum Data Buffering' Scheme

Feb 12, 2009
Researchers Demonstrate 'Quantum Data Buffering' Scheme
Closeup of two "quantum images" created with the help of a "pump" laser beam. The two images are "entangled," so that if there is a change in the intensity in one region ("pixel") of the image, there would be an identical change in the intensity in the corresponding pixel in the second image. In this experiment, one of the images is delayed on its arrival to a detector, so that the correlations between the two images can be out of sync by up to 27 nanoseconds, something that is potentially useful for managing data to a future "quantum computer." Credit: A. Marino/JQI

(PhysOrg.com) -- Pushing the envelope of Albert Einstein's "spooky action at a distance," known as entanglement, researchers at the Joint Quantum Institute (JQI) of the Commerce Department's National Institute of Standards and Technology and the University of Maryland have demonstrated a "quantum buffer," a technique that could be used to control the data flow inside a quantum computer. Quantum computers could potentially speed up or expand present capabilities in decrypting data, searching large databases, and other tasks. The new research is published in the Feb. 12 issue of the journal Nature.

"If you want to set up some sort of communications system or a quantum information-processing system, you need to control the arrival time of one data stream relative to other data streams coming in," says JQI's Alberto Marino, lead author of the paper. "We can accomplish the delay in a compact setup, and we can rapidly change the delay if we want, something that would not be possible with usual laboratory apparatus such as beamsplitters and mirrors," he says.

This new work follows up on the researchers' landmark creation in 2008 of pairs of multi-pixel quantum images (phys.org/news132500362.html). A pair of quantum images is "entangled," which means that their properties are linked in such a way that they exist as a unit rather than individually. In the JQI work, each quantum image is carried by a light beam and consists of up to 100 "pixels." A pixel in one quantum image displays random and unpredictable changes say, in intensity, yet the corresponding pixel in the other image exhibits identical intensity fluctuations at the same time, and these fluctuations are independent from fluctuations in other pixels. This entanglement can persist even if the two images are physically disconnected from one another.

By using a gas cell to slow down one of the light beams to 500 times slower than the speed of light, the group has demonstrated that they could delay the arrival time of one of the entangled images at a detector by up to 27 nanoseconds. The correlations between the two entangled images still occur—but they are out of sync. A flicker in the first image would have a corresponding flicker in the slowed-down image up to 27 nanoseconds later.

While such "delayed entanglement" has been demonstrated before, it has never been accomplished in information-rich quantum images. Up to now, the "spooky action at a distance" has usually been delayed in single-photon systems.

"What gives our system the potential to store lots of data is the combination of having multiple-pixel images and the possibility of each pixel containing 'continuous' values for properties such as the intensity," says co-author Raphael Pooser.

To generate the entanglement, the researchers use a technique known as four-wave mixing, in which incoming light waves are mixed with a "pump" laser beam in a rubidium gas cell to generate a pair of entangled light beams. In their experiment, the researchers then send one of the entangled light beams through a second cell of rubidium gas where a similar four-wave mixing process is used to slow down the beam. The beam is slowed down as a result of the light being absorbed and re-emitted repeatedly in the gas. The amount of delay caused by the gas cell can be controlled by changing the temperature of the cell (by modifying the density of the gas atoms) and also by changing the intensity of the pump beam for the second cell.

This demonstration shows that this type of quantum buffer could be particularly useful for quantum computers, both in its information capacity and its potential to deliver data at precisely defined times.

*More information: A.M. Marino, R.C. Pooser, V. Boyer, and P.D. Lett. Tunable Delay of Einstein-Podolsky-Rosen Entanglement. Nature. Feb. 12, 2009.

Provided by NIST

Explore further: Spin-based electronics: New material successfully tested

add to favorites email to friend print save as pdf

Related Stories

Scalping can raise ticket prices

6 hours ago

Scalping gets a bad rap. For years, artists and concert promoters have stigmatized ticket resale as a practice that unfairly hurts their own sales and forces fans to pay exorbitant prices for tickets to sold-out concerts. ...

Tropical Storm Genevieve forms in Eastern Pacific

8 hours ago

The seventh tropical depression of the Eastern Pacific Ocean formed and quickly ramped up to a tropical storm named "Genevieve." NOAA's GOES-West satellite captured an infrared image of the newborn storm ...

Recommended for you

50-foot-wide Muon g-2 electromagnet installed at Fermilab

17 hours ago

One year ago, the 50-foot-wide Muon g-2 electromagnet arrived at the U.S. Department of Energy's Fermi National Accelerator Laboratory in Illinois after traveling 3,200 miles over land and sea from Long Island, ...

Spin-based electronics: New material successfully tested

Jul 30, 2014

Spintronics is an emerging field of electronics, where devices work by manipulating the spin of electrons rather than the current generated by their motion. This field can offer significant advantages to computer technology. ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

ComplexQM
not rated yet Feb 18, 2009
Forgive me from asking the obvious but if these quantum images have both been observed AND fixed in position is that not contrary to classical QM?
Alex
Complex Quantum Mechanics Yahoo Group
http://tech.group...echanics