Free, open-source software enables innovation with popular but tricky lab technique

Feb 11, 2009

(PhysOrg.com) -- When scientists need to detect and analyze DNA, or traces of a bioweapon or maybe an environmental contaminant, there's a good chance they'll turn to a lab technique called electrophoresis—or one of its many cousins. The versatile process is so pervasive that scientists published research employing it at a pace exceeding one paper every hour in 2007. But even though electrophoresis is used for routine experiments, such as gene sequencing or clinical analysis, it can be fiendishly difficult to create new experiment variations because the technique can be intricate and subtle.

To wash away the difficulty, Stanford engineers have released free, open-source software that can greatly ease experimental design and troubleshooting, smoothing the way for new medical and chemical discoveries. Spresso, available for download at microfluidics.stanford.edu , is like a double shot of caffeine for researchers seeking to do experiments that no one has done before.

"The software provides a new tool for designing complex electrophoresis problems and optimizing them," says mechanical engineering Associate Professor Juan Santiago, a senior author on a paper describing Spresso, published last month in the Journal of Chromatography A. Mechanical engineering and aeronautics and astronautics Professor Sanjiva Lele is a co-author. "The algorithm is about 75 times faster than current state-of-the-art tools and the open-source feature means it can be adapted to new problems," Santiago said.

That 75-fold faster performance, enabled by numerical algorithms unique to Spresso, can mean the difference between waiting overnight for a result and getting it in a few minutes, says Moran Bercovici, an aeronautics and astronautics doctoral student and first author on the paper. Spresso allows scientists to iterate through experimental variations much faster than they could by going into the lab and relying on trial and error.

Electrophoresis simply refers to putting a charged molecule, such as DNA or an explosive compound, into a medium such as a liquid and using an electric field to move it past a detector. What is not so simple, however, is the behavior that results from simultaneous interactions with electric fields, chemical reactions and the other phenomena at play. Among the advances Spresso makes over other software programs is the ability to account for dispersion effects, which can lower the concentration of a target chemical to the point where it becomes unresolvable.

Using the software, researchers can quickly and accurately predict how their experiments will run using a database of more than 400 chemical species, electric field and flow control methods, and other variables, Bercovici said. They also can use the software to troubleshoot and refine their experiments.

Bercovici and mechanical engineering graduate student Robert D. Chambers have used Spresso to design electrophoresis experiments, including a related process called "isotachophoresis," in which they were able to successfully but indirectly detect particularly stealthy toxic chemicals by sensing their effect on the surrounding medium.

"Electrophoresis is helping to enable some of the technologies that are on the forefront of science right now, such as genomics and proteomics," said Chambers, referring to the study of the coding for and expression of proteins made by the cells in our bodies. "Using Spresso, people can now better optimize chemical analyses; it is not inconceivable, for example, that these advances may help us sense a cancer marker which was otherwise at too low of a concentration to be detected."

Spresso: microfluidics.stanford.edu/spresso/2008/09/introducing-spresso.html

Provided by Stanford University

Explore further: Patented research remotely detects nitrogen-rich explosives

add to favorites email to friend print save as pdf

Related Stories

Sustainable ways to keep us flying

Apr 09, 2014

The global aviation industry continues to expand, with over 3 billion people expected to fly commercially in 2014, along with 38 million metric tons of cargo. This activity will have a huge impact on the ...

Lab tests made cheaper with chips

Mar 14, 2014

(Phys.org) —University of New South Wales PhD candidate Ryan Pawell hopes a manufacturing technique he created will cut the cost of medical diagnostics to a few dollars per experiment or test.

Virtual lab for nuclear waste repository research

Mar 04, 2014

A nuclear waste repository must seal in radioactive waste safely for one million years. Researchers currently have to study them and their processes in real underground laboratories but a virtual underground ...

Fully functional loudspeaker is 3-D printed

Dec 13, 2013

(Phys.org) —Cornell researchers have 3-D printed a working loudspeaker, seamlessly integrating the plastic, conductive and magnetic parts, and ready for use almost as soon as it comes out of the printer.

Europe's billion-star surveyor set for launch

Nov 27, 2013

By repeatedly observing a billion stars, with its billion-pixel video camera, the Gaia mission will allow astronomers to determine the origin and evolution of our galaxy whilst also testing gravity, mapping ...

Recommended for you

User comments : 0

More news stories

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...