Engineers revolutionize nano-device fabrication using amorphous metals

Feb 11, 2009

Yale engineers have created a process that may revolutionize the manufacture of nano-devices from computer memory to biomedical sensors by exploiting a novel type of metal. The material can be molded like plastics to create features at the nano-scale and yet is more durable and stronger than silicon or steel. The work is reported in the February 12 issue of Nature.

The search for a cost-effective and manageable process for higher-density computer chip production at the nano-scale has been a challenge. One solution is making nano-scale devices by simple stamping or molding, like the method used for fabricating CDs or DVDs. This however requires stamps or master molds with nano-scale features. While silicon-based molds produce relatively fine detail, they are not very durable. Metals are stronger, but the grain size of their internal structure does not allow nano-scale details to be imprinted on their surfaces.

Unlike most metals, “amorphous metals” known as bulk metallic glasses (BMGs) do not form crystal structures when they are cooled rapidly after heating. Although they seem solid, they are more like a very slow-flowing liquid that has no structure beyond the atomic level — making them ideal for molding fine details, said senior author Jan Schroers of the Yale School of Engineering & Applied Science.

Researchers have been exploring the use of BMGs for about a decade, according to Schroers. “We have finally been able to harness their unusual properties to transform both the process of making molds and producing imprints,” he said. “This process has the potential to replace several lithographic steps in the production of computer chips.”

Schroers says BMGs have the pliability of plastics at moderately elevated temperatures, but they are stronger and more resilient than steel or metals at normal working temperatures.

“We now can make template molds that are far more reliable and lasting than ones made of silicon and are not limited in their detail by the grain size that most metals impose,” said Schroers.

To actually get detail at the nano-scale the researchers had to overcome an issue faced in any molding process — how to get the material to cover the finest detail, and then how to separate the material intact from the mold. Surfaces of liquid metals exhibit high surface tension and capillary effects that can interfere in the molding.

Postdoctoral fellow Golden Kumar found that by altering the mold-BMG combination they could create surfaces so that the atoms take advantage of their favorable interaction with the mold— to both fill the mold and then release the product.

In this paper, Schroers’ team reports nano-patterning of details as small as 13 nanometers— about one ten-thousandth the thickness of a human hair — and the scientists expect that even finer detail will be possible since the BMGs are only limited by the size of a single atom.

While ‘plastics!’ was the catchword of the 1960’s, Schroers says, “We think ‘BMGs!’ will be the buzz-word for the coming decade.”

Source: Yale University

Explore further: Carbyne morphs when stretched: Calculations show carbon-atom chain would go metal to semiconductor

add to favorites email to friend print save as pdf

Related Stories

Scientists explore mash-up of vacuum tube and MOSFET

Jun 25, 2014

Thumb-size vacuum tubes that amplified signals in radio and television sets in the first half of the 20th century might seem nothing like the metal-oxide semiconductor field-effect transistors (MOSFETs) that ...

Recommended for you

An anti-glare, anti-reflective display for mobile devices?

Jul 16, 2014

If you've ever tried to watch a video on a tablet on a sunny day, you know you have to tilt it at just the right angle to get rid of glare or invest in a special filter. But now scientists are reporting in the journal ACS Ap ...

New materials for future green tech devices

Jul 15, 2014

From your hot car to your warm laptop, every machine and device in your life wastes a lot of energy through the loss of heat. But thermoelectric devices, which convert heat to electricity and vice versa, ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

holmstar
not rated yet Feb 12, 2009
Vulvox has begun researching heat exchange materials that transfer heat between hot and cold environments. They show very high heat transfer characteristics in experiments and can be manufactured from materials that can be scaled up and it is possible we can take advantage of economies of scale. They transfer heat much faster than stainless steel and they are much lighter than metallic materials.They will be applied in breakthrough products such as geothermal pumps, solar thermal energy collectors, and industrial heat exchangers with much higher efficiencies. They will be products that will increase industrial efficiency and that will pay for themselves even in a recessionary era. Vulvox has begun experiments on new ways to synthesize graphene paper, one of the strongest materials known to science. We have recently discovered that the material has the porosity and refractory characteristics necessary for filtering molten metals including amorphous metals and we plan to apply for patents in the near future.
pictures are shown at HTTP://VULVOX.tri...d10.html


Why haven't you been banned from this site yet?