The Hsp90-Antifungal Combo, please: Compromising fungi in the immunocompromised

Feb 09, 2009
The researchers found that when antifungals or Hsp90 inhibitors are used individually, they are ineffective; however, when paired they form a deadly duo. Not only did this work in a test tube, but it also worked to cure a lethal infection in an invertebrate model of fungal disease. On the left, are greater wax moth (Galleria mellonella) larvae that are light colored and healthy while on the right are those that were killed by a deadly fungus. Amazingly, the drug combination can rescue 100 percent of the larvae. (Copyright 2009 National Academy of Sciences, U.S.A.)

Even the most drug-resistant fungi can be eradicated in multiple in vitro and in vivo models using a lethal combination of an antifungal agent and inhibition of the heat shock protein Hsp90, according to a new study by Whitehead Institute and University of Toronto researchers. The findings could enable development of novel antifungal therapies for patients with compromised immune systems.

Immunocompromised individuals--including HIV, chemotherapy, and organ transfer patients--with resistant fungal infections suffer mortality rates ranging from 50 to 90 percent.

"Being a pediatric oncologist, I have seen many unfortunate patients die from resistant fungal infections," says Luke Whitesell, a scientist in the lab of Whitehead Member Susan Lindquist. "It's incredibly frustrating to see a child with their cancer in remission being slowly eaten alive by a fungus like Aspergillus, and there's nothing you can do about it."

The development of effective antifungal drugs is limited by humans' close evolutionary relationship with fungi, and, in recent years, fungi's ever-evolving resistance to existing drugs. Former Lindquist postdoctoral researcher and lead author of this study, Leah Cowen, explains: "The drugs just don't wipe out the infection. So you wind up with a small population of fungi living in a host that is exposed to the drug for a long time, which favors evolution of drug resistance."

Previous studies suggested that Hsp90, which is found in both fungi and humans, plays a vital role in the evolution of drug resistance. In this most recent study, which appears in the February 24 issue of the Proceedings of the National Academy of Science (PNAS), Whitehead researchers tested Hsp90 inhibitors in combination with common antifungal drugs in an attempt to block the growth of Candida albicans and Aspergillus fumigatus, two of the most prevalent and lethal species that cause fungal infections in humans.

The researchers found that when antifungals or Hsp90 inhibitors are used individually, they are ineffective; however, when paired they form a deadly duo.

"When you combine the two, you reduce Hsp90 function enough that the fungi can no longer mount the crucial stress responses to antifungals required for survival," says Cowen. "So you cripple the fungus by severely compromising its stress responses."

According to Lindquist, "This is an entirely new strategy for making fungi susceptible to preexisting drugs and for preventing fungi from deploying the resistance mechanisms, which they have evolved against those compounds. It could make the difference between life and death."

Because Hsp90 is highly conserved, finding a compound to turn off Hsp90 in fungi, but not in humans, is a significant hurdle scientists must overcome. In addition, current Hsp90 inhibitors are toxic in mice with resistant fungal infections. To find promising Hsp90 inhibitors for antifungal therapy, Lindquist's lab has received a grant from the Molecular Libraries Probe Center Network (MLPCN) Program of the National Institutes of Health. The grant will allow researchers to screen large numbers of compounds in the search for potential fungus-selective Hsp90 inhibitors.

Still, even if the screen is successful, the battle between humans and fungi is not over.

"Eventually, like most drugs, Hsp90 inhibitors too, will become subject to resistance," suggests Lindquist, who is also a Howard Hughes Medical Institute investigator and professor of biology at MIT. "But in the meantime, these inhibitors will open a very large window of opportunity for individuals with resistant fungal infections."

More information: "Harnessing Hsp90 Function as a Powerful, Broadly Effective Therapeutic Strategy for Fungal Infectious Disease"
PNAS, February 24, 2009

Source: Whitehead Institute for Biomedical Research

Explore further: Tackling illness in premature babies with genetics and artificial noses

add to favorites email to friend print save as pdf

Related Stories

Biochemical pathways may be key to scab resistance

Feb 26, 2014

Pale, shriveled heads of grain spell trouble for wheat and barley farmers—they're the telltale signs of Fusarium head blight. The fungal disease, commonly known as scab, not only dramatically shrinks yields ...

Genetic discovery to keep crops disease-free

Feb 10, 2014

Curtin University researchers have found a way to breed disease-resistant wheat with no downside, potentially bringing multi-million dollar savings to Australia's agricultural industry.

Sussex fungicides may help fight ash dieback

Jan 29, 2014

A new fungicide treatment developed at the University of Sussex is emerging as a weapon in the fight to inhibit growth of Chalara fraxinea, which causes ash dieback, according to initial trials at The Sainsbury Laboratory.

Recommended for you

Proper stem cell function requires hydrogen sulfide

1 hour ago

Stem cells in bone marrow need to produce hydrogen sulfide in order to properly multiply and form bone tissue, according to a new study from the Center for Craniofacial Molecular Biology at the Herman Ostrow School of Dentistry ...

Bionic ankle 'emulates nature'

7 hours ago

These days, Hugh Herr, an associate professor of media arts and sciences at MIT, gets about 100 emails daily from people across the world interested in his bionic limbs.

Firm targets 3D printing synthetic tissues, organs

8 hours ago

(Medical Xpress)—A University of Oxford spin-out, OxSyBio, will develop 3D printing techniques to produce tissue-like synthetic materials for wound healing and drug delivery. In the longer term the company ...

User comments : 0

More news stories

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Spate of Mideast virus infections raises concerns

A recent spate of infections from a frequently deadly Middle East virus is raising new worries about efforts to contain the illness, with infectious disease experts urging greater vigilance in combatting ...

Clean air: Fewer sources for self-cleaning

Up to now, HONO, also known as nitrous acid, was considered one of the most important sources of hydroxyl radicals (OH), which are regarded as the detergent of the atmosphere, allowing the air to clean itself. ...

Thinnest feasible nano-membrane produced

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

There's something ancient in the icebox

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...