Carbon Nanotubes Make Fuel Cells Cheaper

Feb 09, 2009 by Lisa Zyga weblog
Researchers from the University of Dayton have showed that carbon nanotubes can replace platinum as the catalyst in fuel cells, which could significantly reduce fuel cells' overall cost.

(PhysOrg.com) -- As fuel cells are becoming more popular due to their potential use in applications such as hydrogen-powered vehicles, auxiliary power systems, and electronic devices, the need for the precious metal platinum is also increasing. In fuel cells, platinum is often used as the catalyst for oxygen reduction by splitting oxygen molecules into oxygen ions. However, platinum is rare and expensive: in a fuel cell for a typical car, the platinum catalyst costs about $4,000.

Now, researchers from the University of Dayton have showed that carbon nanotubes can replace platinum as the catalyst in fuel cells, which could significantly reduce fuel cells' overall cost. Carbon nanotubes could even have advantages over platinum, since they could be less resistant to corrosion.

The Dayton researchers, led by Liming Dai, doped an array of nanotubes with nitrogen (VA-NCNTs) to prevent the carbon from reacting with oxygen and forming carbon monoxide (CO). Without the nitrogen, CO would build up on the surface and shorten the catalyst's lifetime. With the nitrogen, the nanotubes are more resistant to this carbon monoxide corrosion and have the potential for long-term operation.

The researchers have not built a complete prototype of a fuel cell with nitrogen-containing carbon nanotubes, and they have not estimated the cost to produce them. However, since carbon is abundant and cheap compared with platinum, the overall cost of the proposed design would likely be much less expensive. Hopefully, the metal-free catalyst will assist researchers in moving fuel cell technology forward.

More information: Kuanping Gong et al. (2009) "Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction." Science Vol. 323. no. 5915, p. 753 doi: 10.1126/science.1166510.

via: Ecogeek

© 2009 PhysOrg.com

Explore further: Research mimics brain cells to boost memory power

add to favorites email to friend print save as pdf

Related Stories

Solo hybrid drivers in carpool lanes amplify gridlock

Sep 26, 2014

Allowing single-occupant hybrid cars to use carpool lanes – on some of Los Angeles' busiest highways during rush hour, no less – creates crushing congestion and about $4,500 per car in adverse social ...

'Multi-spectra glasses' for scanning electron microscopy

Sep 26, 2014

The scanning electron microscope is not only used for precisely surveying the surface topology of samples, but also for determining their chemical compositions. This is done by exciting the atoms to fluoresce ...

Modified algae enzymes enable efficient hydrogen production

Sep 25, 2014

(Phys.org) —Hydrogen as a regenerative fuel produced in gigantic water tanks full of algae, which need nothing more than sunlight to produce the promising green energy carrier: a great idea in theory, but one that fails ...

Global solar flight to start, end in Abu Dhabi

Sep 25, 2014

A Swiss-made solar-powered aircraft is planned to start and finish its first round-the-world flight from the United Arab Emirates capital of Abu Dhabi, a government-backed renewable energy company in the ...

A nanosized hydrogen generator

Sep 20, 2014

(Phys.org) —Researchers at the US Department of Energy's (DOE) Argonne National Laboratory have created a small scale "hydrogen generator" that uses light and a two-dimensional graphene platform to boost ...

Recommended for you

How to make a "perfect" solar absorber

23 hours ago

The key to creating a material that would be ideal for converting solar energy to heat is tuning the material's spectrum of absorption just right: It should absorb virtually all wavelengths of light that ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

moj85
1 / 5 (1) Feb 09, 2009
Post the article once a prototype has been made. *yawn*
Nerdle
not rated yet May 12, 2009
Agreed. Also yes carbon is all around us, but carbon nanotubes are not cheap to make