Carbon Nanotubes Make Fuel Cells Cheaper

Feb 09, 2009 by Lisa Zyga weblog
Researchers from the University of Dayton have showed that carbon nanotubes can replace platinum as the catalyst in fuel cells, which could significantly reduce fuel cells' overall cost.

(PhysOrg.com) -- As fuel cells are becoming more popular due to their potential use in applications such as hydrogen-powered vehicles, auxiliary power systems, and electronic devices, the need for the precious metal platinum is also increasing. In fuel cells, platinum is often used as the catalyst for oxygen reduction by splitting oxygen molecules into oxygen ions. However, platinum is rare and expensive: in a fuel cell for a typical car, the platinum catalyst costs about $4,000.

Now, researchers from the University of Dayton have showed that carbon nanotubes can replace platinum as the catalyst in fuel cells, which could significantly reduce fuel cells' overall cost. Carbon nanotubes could even have advantages over platinum, since they could be less resistant to corrosion.

The Dayton researchers, led by Liming Dai, doped an array of nanotubes with nitrogen (VA-NCNTs) to prevent the carbon from reacting with oxygen and forming carbon monoxide (CO). Without the nitrogen, CO would build up on the surface and shorten the catalyst's lifetime. With the nitrogen, the nanotubes are more resistant to this carbon monoxide corrosion and have the potential for long-term operation.

The researchers have not built a complete prototype of a fuel cell with nitrogen-containing carbon nanotubes, and they have not estimated the cost to produce them. However, since carbon is abundant and cheap compared with platinum, the overall cost of the proposed design would likely be much less expensive. Hopefully, the metal-free catalyst will assist researchers in moving fuel cell technology forward.

More information: Kuanping Gong et al. (2009) "Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction." Science Vol. 323. no. 5915, p. 753 doi: 10.1126/science.1166510.

via: Ecogeek

© 2009 PhysOrg.com

Explore further: Dye-sensitized solar cell absorbs a broad range of visible and infrared wavelengths

add to favorites email to friend print save as pdf

Related Stories

Misinformation diffusing online

1 hour ago

The spread of misinformation through online social networks is becoming an increasingly worrying problem. Researchers in India have now modeled how such fictions and diffuse through those networks. They described details ...

Brother of Hibiscus is found alive and well on Maui

1 hour ago

Most people are familiar with Hibiscus flowers- they are an iconic symbol of tropical resorts worldwide where they are commonly planted in the landscape. Some, like Hawaii's State Flower- Hibiscus brackenridgei- are en ...

Congressional rift over environment influences public

2 hours ago

American citizens are increasingly divided over the issue of environmental protection and seem to be taking their cue primarily from Congress, finds new research led by a Michigan State University scholar.

Recommended for you

Light pulses control graphene's electrical behavior

2 hours ago

Graphene, an ultrathin form of carbon with exceptional electrical, optical, and mechanical properties, has become a focus of research on a variety of potential uses. Now researchers at MIT have found a way to control how ...

A new way to make microstructured surfaces

Jul 30, 2014

A team of researchers has created a new way of manufacturing microstructured surfaces that have novel three-dimensional textures. These surfaces, made by self-assembly of carbon nanotubes, could exhibit a ...

Tough foam from tiny sheets

Jul 29, 2014

Tough, ultralight foam of atom-thick sheets can be made to any size and shape through a chemical process invented at Rice University.

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

moj85
1 / 5 (1) Feb 09, 2009
Post the article once a prototype has been made. *yawn*
Nerdle
not rated yet May 12, 2009
Agreed. Also yes carbon is all around us, but carbon nanotubes are not cheap to make