Voluntary vaccination programs shown effective for some diseases

Feb 06, 2009

"Conventional wisdom - and conventional theory - tells us that when infection can potentially be spread to almost everyone in a community, such as for measles, a disease outbreak can never be contained using voluntary vaccination," says Chris Bauch and Ana Persic, researchers from the University of Guelph. "However, our work shows conventional wisdom may be wrong for diseases that are spread primarily through close contact, such as smallpox." Their findings appear in the open-access journal PLoS Computational Biology on February 6th.

Previous studies have suggested that voluntary programs cannot be 100% effective due to the self-interested behavior of individuals. However, most mathematical models used in these studies assume that populations mix homogenously - in effect, that an individual is just as likely to be infected by a complete stranger as by a close friend or family member. But that is not how infections spread with diseases like smallpox or SARS, which are predominantly to close social contacts.

In this new study, Bauch and Perisic analyze "free-rider" effects under voluntary vaccination for vaccine-preventable diseases where disease transmission occurs in a social network. Individuals choose whether to vaccinate based on the risk of infection from their neighbors and any risks associated with the vaccine itself. Neighbors of an infected person will vaccinate as soon as their neighbor's symptoms appear, so when neighborhood size is small, voluntary vaccination results in rapid containment of an outbreak. As neighborhood size increases, a threshold is reached beyond which the infection can break through due to the decisions of neighbours who choose not to vaccinate.

"This approach injects greater realism into the transmission modeling of close contact infections and gives us a much more nuanced picture of how people's behavior influences the effectiveness of voluntary versus mandatory vaccination policies," said Bauch. "For those pathogens that are difficult to transmit, the conventional wisdom that free-rider effects will make eradication difficult under voluntary vaccination may be wrong."

More information: Perisic A, Bauch CT (2009) Social Contact Networks and Disease Eradicability under Voluntary Vaccination. PLoS Comput Biol 5(2): e1000280. doi:10.1371/journal.pcbi.1000280
dx.plos.org/10.1371/journal.pcbi.1000280

Source: Public Library of Science

Explore further: Calcium and reproduction go together

add to favorites email to friend print save as pdf

Related Stories

How the sun caused an aurora this week

31 minutes ago

On the evening of Aug. 20, 2014, the International Space Station was flying past North America when it flew over the dazzling, green blue lights of an aurora. On board, astronaut Reid Wiseman captured this ...

Meet the "swarmies"- robotics' answer to bugs

41 minutes ago

(Phys.org) —A small band of NASA engineers and interns is about to begin testing a group of robots and related software that will show whether it's possible for autonomous machines to scurry about an alien ...

Nanoparticles may aid oil recovery, frack fluid tracking

42 minutes ago

Two Colorado State University researchers are examining how nanoparticles move underground, knowledge that could eventually help improve recovery in oil fields and discover where hydraulic fracking chemicals ...

On the hunt for dark matter

43 minutes ago

New University of Adelaide Future Fellow Dr Martin White is starting a research project that has the potential to redirect the experiments of thousands of physicists around the world who are trying to identify the nature ...

Recommended for you

Researchers look at small RNA pathways in maize tassels

12 hours ago

Researchers at the University of Delaware and other institutions across the country have been awarded a four-year, $6.5 million National Science Foundation grant to analyze developmental events in maize anthers ...

How plant cell compartments change with cell growth

12 hours ago

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

12 hours ago

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

User comments : 0