Fighting tomorrow's hackers

Feb 05, 2009

One of the themes of Dan Brown's The Da Vinci Code is the need to keep vital and sensitive information secure. Today, we take it for granted that most of our information is safe because it's encrypted. Every time we use a credit card, transfer money from our checking accounts -- or even chat on a cell phone -- our personal information is protected by a cryptographic system.

But the development of quantum computers threatens to shatter the security of current cryptographic systems used by businesses and banks around the world.

"We need to develop a new encryption system now, before our current systems -- such as RSA --becomes instantly obsolete with the advent of the first quantum computer," says Prof. Oded Regev at Tel Aviv University's Blavatnik School of Computer Science. To accomplish that, Prof. Regev has proposed the first safe and efficient system believed to be secure against the massive computational power of quantum computers and backed by a mathematical proof of security.

Secure for Centuries

Prof. Regev stresses it is imperative that a new cryptographic system be developed and implemented as soon as possible. One reason is that current information, encrypted with RSA, could be retroactively hacked in the future, once quantum computers are available. That means that bank and other financial information, medical records, and even digital signatures could instantly become visible.

"You don't want this information to remain secure for just 5 or 10 years until quantum computers are built," says Prof. Regev. "You want it to be safe for the next century. We need to develop alternatives to RSA now, before it's too late."

A New Cryptographic System

Cryptographic systems are used to transmit secure information such as bank and online transactions, and typically rely on the assumption that the factoring problem is difficult to solve. As a simplified example, if the number 3088433 were transmitted, an eavesdropper wouldn't be able to tell that the number is derived from the factors 1583 and 1951. "Quantum computers can 'magically' break all of these factoring-based cryptographic systems, something that would take billions of years for current computers to accomplish," Prof. Regev explains.

The current gold standard in encryption is the universally used RSA cryptosystem, which will be instantly broken once quantum computers are a reality -- an event predicted to happen as early as the next decade. To replace RSA in this new reality, Prof. Regev combined ideas from quantum computation with the research of other leaders in the field to create a system that is efficient enough to be practical for real-world applications.

Prof. Regev's work was first announced in the ACM Symposium on Theory of Computing and will appear in the Journal of the Association for Computing Machinery. His work has now become the foundation for several other cryptographic systems developed by researchers from Stanford Research Institute, Stanford University, and MIT. Its potential real-world applications are extensive, ranging from banking transactions to eBay and other online auctions to digital signatures that can remain secure for centuries.

Source: American Friends of Tel Aviv University

Explore further: Coping with floods—of water and data

add to favorites email to friend print save as pdf

Related Stories

Controlling light on a chip at the single-photon level

Dec 16, 2014

Integrating optics and electronics into systems such as fiber-optic data links has revolutionized how we transmit information. A second revolution awaits as researchers seek to develop chips in which individual ...

An Interview with Thomas Vidick on quantum code cracking

Dec 15, 2014

Quantum computers, looked to as the next generation of computing technology, are expected to one day vastly outperform conventional computers. Using the laws of quantum mechanics—the physics that governs ...

Quantum cryptography: Keeping your secrets secret

Mar 26, 2014

An article in Nature reviewing developments in quantum cryptography describes how we can keep our secrets secret even when faced with the double challenge of mistrust and manipulation.

Recommended for you

Coping with floods—of water and data

Dec 19, 2014

Halloween 2013 brought real terror to an Austin, Texas, neighborhood, when a flash flood killed four residents and damaged roughly 1,200 homes. Following torrential rains, Onion Creek swept over its banks and inundated the ...

Cloud computing helps make sense of cloud forests

Dec 17, 2014

The forests that surround Campos do Jordao are among the foggiest places on Earth. With a canopy shrouded in mist much of time, these are the renowned cloud forests of the Brazilian state of São Paulo. It is here that researchers ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.