Molecule that suppresses immune response under study in type 1 diabetes

Feb 04, 2009
Dr. Andrew Mellor (left) with Dr. Phillip Chandler, principal research scientist. Credit: Medical College of Georgia

The idea is to teach the immune system of children at high risk for type 1 diabetes not to attack the insulin-producing cells of the pancreas.

"We want to create a no-go zone," said Dr. Andrew Mellor, immunologist who directs the Medical College of Georgia Immunotherapy Center. Type 1 diabetes is classified as an autoimmune disease because the immune system targets healthy islet cells for destruction, leaving young patients unable to use glucose, a major fuel source for the body.

MCG researchers think they may be able to delay or even prevent that destruction by boosting the body's levels of an enzyme fetuses uses to escape the mother's immune response or by packaging islet cell antigens, which get the immune system's attention, with this suppressor. T-cells are immune cells that decide whether to attack or ignore an antigen. Dr. Mellor believes they'll ignore insulin-producing cells if they see them for the first time with indoleomine 2,3-dioxegenase, or IDO, a powerful immune system inhibitor.

"We are going to be in a situation, in the not too distant future where you can identify an individual at risk, such as a 5-year-old child who has a 90 percent chance of becoming a type 1 diabetic within 10 years," he said. "Once you know that information the onus is on medicine to do something about reducing that risk."

A three-year, $646,000 grant from the Juvenile Diabetes Research Foundation International will enable studies in a classic model of type 1 diabetes: a normal-weight mouse that develops diabetes. Eighty percent of the female mice get diabetes by age 12 to 15 weeks. MCG researchers suspect it's because they have a transient defect in their dendritic cells that hurts IDO expression. Dendritic cells, which can express IDO, show antigens to the T-cells.

A Journal of Immunology paper last year reported that when dendritic cells and IDO are depleted in the mouse, the disease gets worse. Dr. Mellor's research partner Dr. David Munn collaborated with Dr. Jonathan Katz, who directs the Diabetes Research Center at the Cincinnati Children's Hospital Medical Center, on the study. "That was formal evidence that the dendritic cells with IDO were putting the brakes on the disease," said Dr. Mellor, Georgia Research Alliance Eminent Scholar in Molecular Immunogenetics. "It leads to the hypothesis that by reinforcing the IDO mechanism in these mice, you can slow or even prevent the disease." He'll further explore IDO's role in type 1 diabetes by using several different methods to get rid of IDO and observe what happens. He'll also enhance IDO expression in the females by giving a drug commonly used to treat rheumatoid arthritis that the MCG team has learned can boost IDO expression. "The mouse has an endogenous mechanism; it's just defective," said Dr. Mellor. "If you have the IDO come on earlier and stronger, maybe you can slow or halt disease progression or maybe even prevent it."

They'll also deliver a two-step treatment: prompting inflammation, which causes dendritic cells to express IDO, at the same time they give antigens to the insulin-producing cells. "The presence of the antigen excites the T cells if you will, but the presence of IDO tells it to stop getting excited," said Dr. Mellor. The approach has its risks. "The opposite would be disastrous: you would accelerate the disease," said Dr. Mellor. However novel strategies are needed, not just to treat the disease, but to try to prevent it, he said.

Dr. Jin-Xiong She, director of the MCG Center for Biotechnology and Genomic Medicine and Georgia Research Alliance Eminent Scholar in Genomic Medicine, is leading efforts to identify these children. He's a principal investigator on an international effort looking at thousands of babies with genes that put them at high risk for diabetes then following them for years to see how genetics and environment work together to cause the disease. His laboratory studies include identifying additional high-risk genes as well as biomarkers for children at risk.

A different kind of vaccine - one that teaches the immune system to avoid something rather than attack it - may be the best option for these high-risk children, Dr. Mellor said. So he's also using disabled viral vectors, which are good at infecting cells, to deliver IDO as an off switch for the immune system. "We've been thinking IDO for a long time on this one," said Dr. Mellor.

A team of MCG scientists led by Drs. Mellor and Munn showed in research published in Science in 1998 that the fetus expresses IDO to help avoid rejection by the mother's immune system. They also are exploring its therapeutic potential in transplantation and cancer.

Source: Medical College of Georgia

Explore further: Evidence-based recs issued for systemic care in psoriasis

add to favorites email to friend print save as pdf

Related Stories

Cataloguing 10 million human gut microbial genes

Nov 25, 2014

Over the past several years, research on bacteria in the digestive tract (gut microbiome) has confirmed the major role they play in our health. An international consortium, in which INRA participates, has developed the most ...

Scientists map mouse genome's 'mission control centers'

Nov 19, 2014

When the mouse and human genomes were catalogued more than 10 years ago, an international team of researchers set out to understand and compare the "mission control centers" found throughout the large stretches ...

Designer viruses could be the new antibiotics

Oct 15, 2014

Bacterial infections remain a major threat to human and animal health. Worse still, the catalogue of useful antibiotics is shrinking as pathogens build up resistance to these drugs. There are few promising ...

Recommended for you

Evidence-based recs issued for systemic care in psoriasis

6 hours ago

(HealthDay)—For appropriately selected patients with psoriasis, combining biologics with other systemic treatments, including phototherapy, oral medications, or other biologic, may result in greater efficacy ...

Bacteria in caramel apples kills at least four in US

6 hours ago

A listeria outbreak believed to originate from commercially packaged caramel apples has killed at least four people in the United States and sickened 28 people since November, officials said Friday.

Steroid-based treatment may answer needs of pediatric EoE patients

7 hours ago

A new formulation of oral budesonide suspension, a steroid-based treatment, is safe and effective in treating pediatric patients with eosinophilic esophagitis (EoE), according to a new study in Clinical Gastroenterology and Hepatology, the official clinical practice journal ...

Discovery of genes that predispose a severe form of COPD

9 hours ago

A study by Ramcés Falfán-Valencia, researcher at the National Institute of Respiratory Diseases (INER), found that the mestizo Mexican population has a number of variations in certain genes that predispose ...

On the environmental trail of food pathogens

10 hours ago

Tracking one of the deadliest food contamination organisms through produce farms and natural environments alike, Cornell microbiologists are showing how to use big datasets to predict where the next outbreak could start.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.