Researchers Disprove 15-year-old Theory about the Nervous System

Feb 03, 2009

(PhysOrg.com) -- A delay in traffic may cause a headache, but a delay in the nervous system can cause much more. University of Missouri researchers have uncovered clues identifying which proteins are involved in the development of the nervous system and found that the proteins previously thought to play a significant role, in fact, do not. Understanding how the nervous system develops will give researchers a better understanding of neurological diseases, such as multiple sclerosis and Charcot-Marie-Tooth disorders.

“Speed is the key to the nervous system,” said Michael Garcia, investigator in the Christopher S. Bond Life Sciences Center and assistant professor of biological sciences in the MU College of Arts and Science. “The peripheral nervous system ‘talks’ to muscles through nerve impulses in response to external stimuli. When babies are born, they do not have fully developed nervous systems, and their systems run slower. Eventually, the nervous system matures. Our study tried to understand that maturation process.”

The process of nerve cells maturation is called myelination. During myelination, a layer of myelin (electrically insulating material) wraps or forms around the axons (part of the nerve cell that conducts electrical impulses). Nerve impulses travel faster in myelinated nerve cells.

“Myelination is important for signal transmission because it increases nerve conduction velocity,” Garcia said. “The relationship between axons and myelinating cells is a reciprocal one, with each cell type sending and receiving signals from the other cell. One signal originates from myelinating cells and results in a large increase in axonal diameter.”

When nerve cells are unmyelinated, the axon has a smaller diameter and contains neurofilaments that are less modified and are more compact. Neurofilaments are a group of proteins that are essential for diameter growth. The protein group includes neurofilament subunits that are classified as light, medium and heavy. Loss of all neurofilaments in the axon results in myelinated axons with slowed conduction velocities.

For the last 15 years, the proposed underlying mechanism for an axon’s diameter growth has focused on myelin-dependent modification of regions of neurofilaments that are located within the heavy and medium subunits. In a previous study, genetically removing the region of the medium subunit that is modified impaired growth and slowed nerve conduction. However, this did not directly test if the proposed modification was required as a much larger region was genetically removed. In the current study, researchers genetically altered the neurofilament medium subunit such that it could no longer be modified in response to myelination. Surprisingly, Garcia found that prevention of what was thought to be an extremely important modification did not affect axonal diameter.

“It is now clear that the basic mechanism for how neurofilaments affect axonal diameters remains unanswered,” Garcia said. “This discovery introduces a lot of new questions.”

The study, “Phosphorylation of Highly Conserved Neurofilament-M KSP Repeats Is Not Required for Myelin-Dependent Radial Axonal Growth,” was published in The Journal of Neuroscience. The research was funded by the National Institutes of Health.

Provided by University of Missouri

Explore further: Monitoring the rise and fall of the microbiome

add to favorites email to friend print save as pdf

Related Stories

Hoverbike drone project for air transport takes off

7 hours ago

What happens when you cross a helicopter with a motorbike? The crew at Malloy Aeronautics has been focused on a viable answer and has launched a crowdfunding campaign to support its Hoverbike project, "The ...

Study indicates large raptors in Africa used for bushmeat

7 hours ago

Bushmeat, the use of native animal species for food or commercial food sale, has been heavily documented to be a significant factor in the decline of many species of primates and other mammals. However, a new study indicates ...

'Shocking' underground water loss in US drought

8 hours ago

A major drought across the western United States has sapped underground water resources, posing a greater threat to the water supply than previously understood, scientists said Thursday.

Recommended for you

Monitoring the rise and fall of the microbiome

1 hour ago

Trillions of bacteria live in each person's digestive tract. Scientists believe that some of these bacteria help digest food and stave off harmful infections, but their role in human health is not well understood.

Antioxidant biomaterial promotes healing

9 hours ago

When a foreign material like a medical device or surgical implant is put inside the human body, the body always responds. According to Northwestern University's Guillermo Ameer, most of the time, that response can be negative ...

Immune response may cause harm in brain injuries, disorders

11 hours ago

Could the body's own immune system play a role in memory impairment and cognitive dysfunction associated with conditions like chronic epilepsy, Alzheimer's dementia and concussions? Cleveland Clinic researchers believe so, ...

User comments : 0