Don't go changing: New chemical keeps stem cells young

Feb 03, 2009
Professor Melanie Welham led the research at Bath, a collaboration with colleagues at the University of Leeds. Credit: Nic Delves-Broughton, University of Bath

Scientists at the Universities of Bath and Leeds have discovered a chemical that stops stem cells from turning into other cell types, allowing researchers to use these cells to develop new medical treatments more easily.

Stem cells have the ability to develop into many other cell types in the body, and scientists believe they have huge potential to treat diseases or injuries that don't currently have a cure.

Professor Melanie Welham's team at the University of Bath's Department of Pharmacy & Pharmacology, collaborating with Professor Adam Nelson at the University of Leeds, have discovered a chemical that can be added to embryonic stem cells grown in the lab, allowing them to multiply without changing into other cell types.

This breakthrough will help scientists produce large stocks of cells that are needed for developing new medical therapies.

Professor Welham, who is co-director of the University of Bath's Centre for Regenerative Medicine, explained: "Stem cells have great potential for treating spinal injuries and diseases like type I diabetes because they can change into a range of specialised cell types including nerve or pancreatic cells, which could be used to repair damaged tissues.

"Unfortunately, when you grow stem cells in the lab, they can spontaneously develop into specialised cells, making it difficult to grow large enough stocks to use for medical research.

"We've identified a chemical that will put this process on hold for several weeks so that we can grow large numbers of them in their unspecialised state. This is reversible, so when you take it away from the cells, they still have the ability to change into specialised cells."

Professor Adam Nelson's team, at the Astbury Centre for Structural Molecular Biology, made more than 50 chemical compounds that were tested for activity in the stem cells.The researchers found that the chemicals worked by blocking an enzyme, called GSK3, that can control when the stem cell switches to a more specialised cell type.

Professor Nelson, who is Director of the Astbury Centre at the University of Leeds, said: "This research is a great example of how small molecules can be used as tools to understand biological mechanisms."

The research, supported by funding from the Biotechnology & Biological Sciences Research Council, is published in the prestigious peer-reviewed Cell Press journal, Chemistry & Biology.

Source: University of Bath

Explore further: Final pieces to the circadian clock puzzle found

add to favorites email to friend print save as pdf

Related Stories

How to tell good stem cells from the bad

Sep 05, 2014

The promise of embryonic stem cell research has been thwarted by an inability to answer a simple question: How do you know a good stem cell from a bad one?

New protagonist in cell reprogramming discovered

Sep 04, 2014

A group of researchers from the Centre for Genomic Regulation in Barcelona have described the role of a protein that is crucial for cell reprogramming. The discovery also details the dynamics of this protein as well as its ...

Central biobank for drug research

Sep 01, 2014

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

Recommended for you

Final pieces to the circadian clock puzzle found

5 hours ago

Researchers at the UNC School of Medicine have discovered how two genes – Period and Cryptochrome – keep the circadian clocks in all human cells in time and in proper rhythm with the 24-hour day, as well ...

Measuring modified protein structures

9 hours ago

Swiss researchers have developed a new approach to measure proteins with structures that change. This could enable new diagnostic tools for the early recognition of neurodegenerative diseases to be developed.

New insights in survival strategies of bacteria

9 hours ago

Bacteria are particularly ingenious when it comes to survival strategies. They often create a biofilm to protect themselves from a hostile environment, for example during treatment with antibiotics. A biofilm is a bacterial ...

Bangladesh meet begins to save endangered tigers

10 hours ago

Some 140 tiger experts and government officials from 20 countries met in the Bangladeshi capital Dhaka on Sunday to review progress towards an ambitious goal of doubling their number in the wild by 2022.

Study solves the bluetongue disease 'overwintering' mystery

Sep 12, 2014

The bluetongue virus, which causes a serious disease that costs the cattle and sheep industries in the United States an estimated $125 million annually, manages to survive the winter by reproducing in the insect that transmits ...

User comments : 0