Don't go changing: New chemical keeps stem cells young

Feb 03, 2009
Professor Melanie Welham led the research at Bath, a collaboration with colleagues at the University of Leeds. Credit: Nic Delves-Broughton, University of Bath

Scientists at the Universities of Bath and Leeds have discovered a chemical that stops stem cells from turning into other cell types, allowing researchers to use these cells to develop new medical treatments more easily.

Stem cells have the ability to develop into many other cell types in the body, and scientists believe they have huge potential to treat diseases or injuries that don't currently have a cure.

Professor Melanie Welham's team at the University of Bath's Department of Pharmacy & Pharmacology, collaborating with Professor Adam Nelson at the University of Leeds, have discovered a chemical that can be added to embryonic stem cells grown in the lab, allowing them to multiply without changing into other cell types.

This breakthrough will help scientists produce large stocks of cells that are needed for developing new medical therapies.

Professor Welham, who is co-director of the University of Bath's Centre for Regenerative Medicine, explained: "Stem cells have great potential for treating spinal injuries and diseases like type I diabetes because they can change into a range of specialised cell types including nerve or pancreatic cells, which could be used to repair damaged tissues.

"Unfortunately, when you grow stem cells in the lab, they can spontaneously develop into specialised cells, making it difficult to grow large enough stocks to use for medical research.

"We've identified a chemical that will put this process on hold for several weeks so that we can grow large numbers of them in their unspecialised state. This is reversible, so when you take it away from the cells, they still have the ability to change into specialised cells."

Professor Adam Nelson's team, at the Astbury Centre for Structural Molecular Biology, made more than 50 chemical compounds that were tested for activity in the stem cells.The researchers found that the chemicals worked by blocking an enzyme, called GSK3, that can control when the stem cell switches to a more specialised cell type.

Professor Nelson, who is Director of the Astbury Centre at the University of Leeds, said: "This research is a great example of how small molecules can be used as tools to understand biological mechanisms."

The research, supported by funding from the Biotechnology & Biological Sciences Research Council, is published in the prestigious peer-reviewed Cell Press journal, Chemistry & Biology.

Source: University of Bath

Explore further: Scottish zoo: 'Bad news' for pregnant giant panda

add to favorites email to friend print save as pdf

Related Stories

How the zebrafish gets its stripes

Aug 28, 2014

The zebrafish, a small fresh water fish, owes its name to a striking pattern of blue stripes alternating with golden stripes. Three major pigment cell types, black cells, reflective silvery cells, and yellow ...

New tool aids stem cell engineering for medical research

Aug 28, 2014

A Mayo Clinic researcher and his collaborators have developed an online analytic tool that will speed up and enhance the process of re-engineering cells for biomedical investigation. CellNet is a free-use Internet platform ...

Tissue regeneration using anti-inflammatory nanomolecules

Aug 22, 2014

Anyone who has suffered an injury can probably remember the after-effects, including pain, swelling or redness. These are signs that the body is fighting back against the injury. When tissue in the body is damaged, biological ...

Recommended for you

DNA may have had humble beginnings as nutrient carrier

8 hours ago

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

Central biobank for drug research

8 hours ago

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

User comments : 0