How a Cell's Mitotic Motors Direct Key Life Processes

Feb 02, 2009

University of Massachusetts Amherst biologists have discovered a secret of how cells organize chromosomes to prepare for dividing. Their unexpected finding is reported in this week’s issue of the journal, Current Biology.

The experiments sought to reveal how the cell’s tiny, two-part chemical engine known as dynein, just 40 nanometers in diameter, takes charge of mitosis and keeps the delicate strands of chromosomes in order and in position. Until now, cell biologists had assumed it was the dynein’s cargo domain that regulated this process. UMass Amherst cell biologist Wei-lih Lee and colleagues showed that it is the motor domain instead.

Dynein, like a delivery truck, carries cargo, Lee explains, but this protein truck is specialized because it interacts chemically and physically with the road. In the cell, this means dynein travels along segments of polymeric microtubule “roads” that grow and shrink as needed by adding or dropping sections. From experiments in budding yeast, Lee, with a talented postdoctoral fellow, Steven Markus, and biology junior fellow Jesse Punch, found that “dynein has a preference for locating at the ends of these microtubule tracks.”

Lee says a lot of credit for a cleverly designed and executed set of experiments goes to Markus, who cut the dynein engines into motor and cargo halves and challenged the yeast cells to divide with access to only one part of the protein at a time. Markus also designed brighter-than-usual fluorescent probes to attach to the two dynein parts, red for the engine, green for the cargo domain. The strategies worked. The UMass Amherst research team now has one of the most elegant and practical probes for studying dynein function. Lee says, “I’m already getting requests from other researchers who want to use our new probes.”

In this system, they observed that like a moving walkway at the airport, “dynein is a smart truck because it parks at the end of the microtubule, and ‘rides’ along as the track grows,” Lee explains. “Our findings show that the dynein’s motor domain, the engine’s core, is responsible for this end-binding property, which is surprising given that the same domain is used for walking along the track.”

Applying their new understanding to cell division, the researchers say, “our findings further suggest that the dynein engine is turned off when it is parked on the microtubule end, but then turned on upon reaching the proper attachment site in the daughter cell’s wall,” says Lee. “This mechanism allows the yeast cell to control dynein activation with high accuracy” and avoids potential problems of transporting an “activated” protein through the cell.

Results of this new knowledge in basic science are also relevant for human nerve cell function. “It has already been shown that nerve cells use the same mechanism as yeast does to move the cell body,” says Lee. Dynein malfunction can lead to mistakes in nerve cell migration which causes poor brain development disease such as lissencephaly.

Provided by University of Massachusetts Amherst

Explore further: 'Killer sperm' prevents mating between worm species

add to favorites email to friend print save as pdf

Related Stories

Scalping can raise ticket prices

5 hours ago

Scalping gets a bad rap. For years, artists and concert promoters have stigmatized ticket resale as a practice that unfairly hurts their own sales and forces fans to pay exorbitant prices for tickets to sold-out concerts. ...

Tropical Storm Genevieve forms in Eastern Pacific

7 hours ago

The seventh tropical depression of the Eastern Pacific Ocean formed and quickly ramped up to a tropical storm named "Genevieve." NOAA's GOES-West satellite captured an infrared image of the newborn storm ...

Recommended for you

'Killer sperm' prevents mating between worm species

13 hours ago

The classic definition of a biological species is the ability to breed within its group, and the inability to breed outside it. For instance, breeding a horse and a donkey may result in a live mule offspring, ...

Rare Sri Lankan leopards born in French zoo

16 hours ago

Two rare Sri Lankan leopard cubs have been born in a zoo in northern France, a boost for a sub-species that numbers only about 700 in the wild, the head of the facility said Tuesday.

Japan wraps up Pacific whale hunt

17 hours ago

Japan announced Tuesday that it had wrapped up a whale hunt in the Pacific, the second campaign since the UN's top court ordered Tokyo to halt a separate slaughter in the Antarctic.

Researchers uncover secrets of internal cell fine-tuning

17 hours ago

New research from scientists at the University of Kent has shown for the first time how the structures inside cells are regulated – a breakthrough that could have a major impact on cancer therapy development.

User comments : 0