Stanford study prevents pancreatic tumor growth in mice by inhibiting key protein

Feb 01, 2009

Researchers at Stanford University School of Medicine have identified a protein critical for the growth of pancreatic cancer. Blocking the expression of the protein slowed or prevented tumor growth in mice and made cultured cancer cells vulnerable to the conditions of low oxygen that occur in solid tumors.

"This research clearly shows that inhibiting the protein inhibits the tumor's ability to grow," said cancer biologist Amato Giaccia, PhD. "Ultimately, we'd like to be able to specifically knock out the expression of this protein in pancreatic tumors in humans."

Pancreatic cancer is a highly aggressive and deadly disease that accounts for more than 30,000 deaths in the United States annually, and current therapies are largely ineffective.

"Right now, we have very little to offer these patients," said Giaccia. He is the Jack, Lulu and Sam Willson Professor and professor of radiation oncology and the senior author of the research, which will be published Feb. 1 in the journal Cancer Research. Giaccia is also a member of the Stanford Cancer Center.

The researchers studied a protein called connective tissue growth factor, or CTGF. Also known as CCN2, the protein is involved in the abnormal growth of connective tissue in response to injury or disease. It was also thought to be involved in pancreatic tumor progression, although the exact role it played was unknown.

Giaccia and his collaborators found that human pancreatic cancer cells expressing high levels of CCN2 grew robustly when injected under the skin of mice. In fact, in the developing tumor these cells soon out-competed others that expressed lower levels of the protein. Conversely, pancreatic cancer cells in which CCN2 expression was suppressed were either less likely or unable to form tumors when injected into mice.

The researchers observed similar effects when the cancer cells were injected directly into the animals' pancreases. Cancer cells expressing high levels of CCN2 formed tumors that grew more rapidly and metastasized more aggressively than did those expressing lower levels, and the mice died sooner than others injected with cancer cells expressing less CCN2.

It's difficult for many types of rapidly growing solid tumors to recruit and build enough blood vessels to keep all the cancer cells adequately oxygenated. Normal cells undergo a process of programmed cell death when oxygen levels drop too far. Overcoming this response to low oxygen levels — a condition called hypoxia — is a critical step in tumor progression.

The researchers wondered if CCN2 played a role in keeping tumor cells alive in hypoxic conditions. If so, this might explain why CCN2-expressing cancer cells are favored during tumor growth. They found that blocking CCN2 expression in cultured pancreatic cancer cells made them significantly more sensitive to hypoxia-induced death than their peers. Additionally, CCN2 was more highly expressed in pancreatic tumor samples from human patients than in neighboring tissue and CCN2 expression seemed to correlate with the expression of another protein expressed by hypoxic cells. Finally, hypoxic conditions themselves cause the pancreatic cancer cells to make CCN2.

Many other cellular conditions can also kick-start CCN2 expression, including the presence of CCN2 itself. The activation of other pathways known to be involved in cancer also increases its expression. As a result, many of the events that occur in a developing tumor act as a kind of perfect storm to support the production of ever-larger amounts of CCN2, which then support additional tumor growth and metastasis.

Looking ahead, the researchers would like to know whether people with pancreatic cancer could benefit from therapies targeting CCN2. A phase-1 clinical trial testing the safety of an antibody that binds CCN2 and blocks its activity in a small number of patients began in December at Stanford and Dartmouth-Hitchcock Medical Center. Phase-1 clinical trials are not designed to determine whether a treatment works — only whether it is safe enough for further testing. Albert Koong, MD, PhD, an assistant professor of radiation oncology and a member of the Cancer Center, is the principal investigator for the Stanford arm of the trial.

"We saw a pronounced effect of CCN2 inhibition in these experiments in mice," said Giaccia. "Our hope is that one day a combination of standard therapy and antibody treatment will have an effect on tumor progression in human patients."

Source: Stanford University Medical Center

Explore further: Six percent of colorectal cancer found to be interval tumors

add to favorites email to friend print save as pdf

Related Stories

'Vicious cycle' shields, spreads cancer cells

Sep 16, 2013

A "vicious cycle" produces mucus that protects uterine and pancreatic cancer cells and promotes their proliferation, according to researchers at Rice University. The researchers offer hope for a therapeutic ...

Recommended for you

Physicians target the genes of lung, colon cancers

9 hours ago

(Medical Xpress)—University of Florida physicians and researchers are collaborating to map the genes of different types of cancer, and then deliver medication to attack cancer at its source.

User comments : 0

More news stories

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

Researchers see hospitalization records as additional tool

Comparing hospitalization records with data reported to local boards of health presents a more accurate way to monitor how well communities track disease outbreaks, according to a paper published April 16 in the journal PLOS ON ...

Ebola virus in Africa outbreak is a new strain

The Ebola virus that has killed scores of people in Guinea this year is a new strain—evidence that the disease did not spread there from outbreaks in some other African nations, scientists report.