Scientists see the light: How vision sends its message to the brain

Jan 29, 2009

Scientists have known for more than 200 years that vision begins with a series of chemical reactions when light strikes the retina, but the specific chemical processes have largely been a mystery. A team of researchers from the United States and Switzerland, have she new light on this process by "capturing" this chemical communication for future study. This research, published in the February 2009 issue of The FASEB Journal , may lead to the development of new treatments for some forms of blindness and vision disorders.

At the center of the discovery is the signaling of rhodopsin to transducin. Rhodopsin is a pigment in the eye that helps detect light. Transducin is a protein (sometimes called "GPCR") which ultimately signals the brain that light is present. The researchers were able to "freeze frame" the chemical communication between rhodopsin and transducin to study how this takes place and what goes wrong at the molecular level in certain disorders.

According to Krzysztof Palczewski, a senior scientist involved in the research, "The results may have important implications for discovery and development of more specific medicines to treat GPCR-linked dysfunction and disease." Examples of health problems involving GPCR dysfunction include blindness, diabetes, allergies, depression, cardiovascular defects and some forms of cancer.

To make their discovery, scientists isolated rhodopsin/transducin directly from bovine retinas. These membranes were suspended in solution and exposed to light to start the chemical signaling process. After light exposure, any contaminating proteins were removed, and the remaining rhodopsin and transducin "locked" in their chemical communication were removed using a centrifuge. In addition to helping scientists understand how vision begins, this research may also impact disorders affecting heart beat, blood pressure, memory, pain sensation, and infection response because it is believed that they are regulated by similar chemical communications involving similar proteins.

"Until now, scientists have been in the dark when it comes to exactly how vision begins. This exciting new work shows how light becomes a chemical signal to the brain," said Gerald Weissmann, Editor-in-Chief of The FASEB Journal. "Now that we see the light, so to speak, entirely new types of custom-fit become possible for a wide range of diseases."

A recent and related article in The FASEB Journal on milestones in photochemistry is available at www.fasebj.org/cgi/content/full/22/12/4038 .

Source: Federation of American Societies for Experimental Biology

Explore further: Antioxidant found in grapes uncorks new targets for acne treatment

add to favorites email to friend print save as pdf

Related Stories

'Nanobionics' aims to give plants super powers

Apr 02, 2014

Plants are an engineering marvel of nature. Fueled by sunlight, they recycle our carbon dioxide waste into fresh oxygen for us to breathe. Plus, they make the world prettier. But, with a little help from us humans, can they ...

Honda smart home offers vision for zero carbon living

Mar 26, 2014

Honda and the University of California, Davis, today marked the opening of Honda Smart Home US, showcasing technologies that enable zero net energy living and transportation. The home in UC Davis West Village ...

Physics: A fundamental force for future security

Feb 13, 2014

What is matter? What is energy? What holds matter together? How do the various constituents of the universe interact at the most basic level? Where does the Earth sit in relation to the rest of the universe? ...

Recommended for you

ZEB1, Oscar for leading role in fat storage

59 minutes ago

A team from Ecole polytechnique fédérale de Lausanne in Switzerland, in collaboration with ETH Zurich, has managed to decode the process of adipogenesis by identifying the precise proteins that play the ...

Study establishes zebrafish as a model for flu study

4 hours ago

In the ongoing struggle to prevent and manage seasonal flu outbreaks, animal models of influenza infection are essential to gaining better understanding of innate immune response and screening for new drugs. ...

User comments : 0