Physicists discover surprising variation in superconductors

Jan 28, 2009 By Anne Trafton

(PhysOrg.com) -- MIT physicists have discovered that several high-temperature superconductors display patchwork quilt-like variations at the atomic scale, a surprising finding that could help scientists understand a new class of unconventional materials.

The researchers said the variation in a property known as the Fermi surface, which has never been seen before in any kind of material, could just be an oddity. But it could also serve as an important clue for physicists working to unravel the mystery of why a broad new class of materials exhibits exotic properties from high-temperature superconductivity (the ability to carry electricity with no resistance) to colossal magneto-resistance (the ability to dramatically change electrical resistance when a magnetic field is applied).

In such materials, known as strongly correlated electronic materials, interactions between electrons, normally weak enough that they can essentially be ignored, dominate the physics of the material, leading to a host of unexplained phenomena.

"These materials are so unusual that we decided to check for variations that would normally be impossible -- and there they were," said Eric Hudson, associate professor of physics and senior author of a paper on the work that appeared online in Nature Physics Jan. 25.

Hudson and colleagues found that the Fermi surface, a measurement of the distribution of electrons in a material, varies at the atomic scale across the surface of two bismuth-based superconductors, which belong to the class of strongly correlated electronic materials. Until now, it was believed that Fermi surface was uniform throughout any material.

"The idea that electrons separated by just an atom's distance can behave so differently is astonishing," Hudson said.

The discovery that electronic properties can vary so much on the nanoscale could shed light on how this class of materials deals with strongly interacting electrons, and how their unusual properties arise, he said.

To study the Fermi surface, the researchers used a common technique called scanning tunneling microscopy, which, combined with a new analysis method called quasiparticle interference, can reveal, on an atom-by-atom basis, what electrons are doing.

Lead author of the paper is physics graduate student William Wise. Other MIT authors are graduate student Kamalesh Chatterjee; former graduate student Michael Boyer; and former postdoctoral associates Takeshi Kondo and Yayu Wang. Researchers from Nagoya University in Japan and Brookhaven National Laboratory also contributed to the work.

Provided by MIT

Explore further: Vortex of electrons provides unprecedented information on magnetic quantum states in solids

add to favorites email to friend print save as pdf

Related Stories

Refreshable Braille gets an engineer's touch

Nov 13, 2014

When Katherine (Katie) Cagen '14 was applying to Harvard, she made a new friend on campus who happened to be visually impaired. "I saw how much she relied on technology to be able to access her course materials," ...

How a giant impact formed asteroid Vesta's 'belt'

Nov 03, 2014

When NASA's Dawn spacecraft visited the asteroid Vesta in 2011, it showed that deep grooves that circle the asteroid's equator like a cosmic belt were probably caused by a massive impact on Vesta's south ...

Recommended for you

Scientists film magnetic memory in super slow-motion

2 hours ago

Researchers at DESY have used high-speed photography to film one of the candidates for the magnetic data storage devices of the future in action. The film was taken using an X-ray microscope and shows magnetic ...

Particles, waves and ants

Nov 26, 2014

Animals looking for food or light waves moving through turbid media – astonishing similarities have now been found between completely different phenomena.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.