Single Atom Quantum Dots Bring Real Devices Closer (Video)

Jan 27, 2009
Four atomic quantum dots are coupled to form a "cell" for containing electrons. The cell is filled with just two electrons. Control charges are placed along a diagonal to direct the two electrons to reside at just two of the four quantum dots comprising the cell. This new level of control of electrons points to new computation schemes that require extremely low power to operate. Such a device is expected to require about 1,000 times less power and will be about 1,000 times smaller than today's transistors. Credit: Robert A. Wolkow

(PhysOrg.com) -- Single atom quantum dots created by researchers at Canada’s National Institute for Nanotechnology and the University of Alberta make possible a new level of control over individual electrons, a development that suddenly brings quantum dot-based devices within reach. Composed of a single atom of silicon and measuring less than one nanometre in diameter, these are the smallest quantum dots ever created.

Quantum dots have extraordinary electronic properties, like the ability to bottle-up normally slippery and speedy electrons. This allows controlled interactions among electrons to be put to use to do computations. Until now, quantum dots have been useable only at impractically low temperatures, but the new atom-sized quantum dots perform at room temperature.

Often referred to as artificial atoms, quantum dots have previously ranged in size from 2-10 nanometers in diameter. While typically composed of several thousand atoms, all the atoms pool their electrons to “sing with one voice”, that is, the electrons are shared and coordinated as if there is only one atomic nucleus at the centre. That property enables numerous revolutionary schemes for electronic devices.

This video is not supported by your browser at this time.
An animation explaining the use of single atom quantum dots to enable the QCA computation scheme. Video by Robert A. Wolkow

Research project leader Robert A. Wolkow described the potential impact saying, “Because they operate at room temperature and exist on the familiar silicon crystals used in today’s computers, we expect these single atom quantum dots will transform theoretical plans into real devices.”

The single atom quantum dots have also demonstrated another advantage - significant control over individual electrons by using very little energy. Wolkow sees this low energy control as the key to quantum dot application in entirely new forms of silicon-based electronic devices, such as ultra low power computers. “The capacity to compose these quantum dots on silicon, the most established electronic material, and to achieve control over electron placement among dots at room temperature puts new kinds of extremely low energy computation devices within reach.”

The single atom quantum dots and their ability to control electrons is the focus of a paper titled “Controlled Coupling and Occupation of Silicon Atomic Quantum Dots at Room Temperature” posted January 27, 2009, in the on-line edition and published in the January 30, 2009, edition of Physical Review Letters.

Reference: Controlled Coupling and Occupation of Silicon Atomic Quantum Dots at Room Temperature, M. Baseer Haider, Jason L Pitters, Gino A. DiLabio, Lucian Livadaru, Josh Y Mutus and Robert A. Wolkow, Physical Review Letters 102, 046805, 2009

Source: National Institute for Nanotechnology

Explore further: Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch

add to favorites email to friend print save as pdf

Related Stories

White House backs use of body cameras by police

2 hours ago

Requiring police officers to wear body cameras is one potential solution for bridging deep mistrust between law enforcement and the public, the White House said, weighing in on a national debate sparked by the shooting of ...

Study urges 15-year plan for low-carbon growth

2 hours ago

The world can save both financial and environmental costs by shifting toward a low-carbon economy over the next 15 years, a high-level panel said Tuesday ahead of a UN summit.

Recommended for you

A nanosized hydrogen generator

3 hours ago

(Phys.org) —Researchers at the US Department of Energy's (DOE) Argonne National Laboratory have created a small scale "hydrogen generator" that uses light and a two-dimensional graphene platform to boost ...

For electronics beyond silicon, a new contender emerges

Sep 16, 2014

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

Sep 16, 2014

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

Sep 16, 2014

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

superhuman
not rated yet Jan 30, 2009
"Single atom quantum dot" = atom