Rewrite the textbooks: Transcription is bidirectional

Jan 25, 2009

Genes that contain instructions for making proteins make up less than 2% of the human genome. Yet, for unknown reasons, most of our genome is transcribed into RNA. The same is true for many other organisms that are easier to study than humans.

Researchers in the groups of Lars Steinmetz at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and Wolfgang Huber at the European Bioinformatics Institute (EMBL-EBI) in Hinxton, UK, have now unravelled how yeast generates its transcripts and have come a step closer to understanding their function.

The study, published online in Nature, redefines the concept of promoters (the start sites of transcription) contradicting the established notion that they support transcription in one direction only. The results are also representative of transcription in humans.

Investigating all transcripts produced in a yeast cell, the scientists found that most regions of the yeast genome produce several transcripts starting at the same promoter. These transcripts are interleaved and overlapping on the DNA. In contrast to what was previously thought, the vast majority of promoters seem to initiate transcription in both directions.

Not all of the produced transcripts are stable, many are degraded rapidly making it difficult to observe what they do. While some of the RNA molecules might be 'transcriptional noise' without function, other transcripts control the expression of genes and production of proteins. The act of transcription itself is also likely to play an important role in regulation of gene expression. Transcribing one stretch of DNA might either help or in other cases interfere with the transcription of a gene close by. Moreover, transcripts without a current purpose can serve as 'raw material for evolution' and acquire new functions over time.

The results shed light on the complex organisation of the yeast genome and the insights gained extend to transcription in humans. A better understanding of transcription mechanisms could find application in new technologies to tune gene regulation in the future.

Source: European Molecular Biology Laboratory

Explore further: Geneticists solve 40-year-old dilemma to explain why duplicate genes remain in the genome

add to favorites email to friend print save as pdf

Related Stories

Cellular RNA can template DNA repair in yeast

Sep 03, 2014

The ability to accurately repair DNA damaged by spontaneous errors, oxidation or mutagens is crucial to the survival of cells. This repair is normally accomplished by using an identical or homologous intact ...

How yeast formations got started

Aug 15, 2014

Researchers conducted a comparative analysis of nearly 60 fungal genomes to determine the genetic traits that enabled the convergent evolution of yeasts.

Recommended for you

What happens when good genes get lost?

1 hour ago

Scientifically speaking, there is no bad DNA, though we like to blame it for unruly hair, klutziness or poor gardening skills. There is, however, junk DNA.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

A_Paradox
not rated yet Jan 26, 2009
This is absolutely fascinating. It points, in one way, to genetic evolution being a kind of Heath-Robinson serendipity. In another way though it points to why multicellular life took thousands of millions of years to evolve, and to the amazing robustness of genomes which endure.