University of Miami engineer designs stretchable electronics with a twist

Jan 21, 2009

Jizhou Song, a professor in the University of Miami College of Engineering and his collaborators Professor John Rogers, at the University of Illinois and Professor Yonggang Huang, at Northwestern University have developed a new design for stretchable electronics that can be wrapped around complex shapes, without a reduction in electronic function.

The new mechanical design strategy is based on semiconductor nanomaterials that can offer high stretchability (e.g., 140%) and large twistability such as corkscrew twists with tight pitch (e.g., 90o in 1cm). Potential uses for the new design include electronic devices for eye cameras, smart surgical gloves, body parts, airplane wings, back planes for liquid crystal displays and biomedical devises.

"Our design is of great interest because the requirements for complex shapes that can function during stretching, compression, bending, twisting and other types of extreme mechanical deformation are impossible to satisfy with conventional technology," said Song.

The secret of the design is in the silicon (Si) islands on which the active devices or circuits are fabricated. The islands form a chemically bonded, pre-strained elastomeric substrate. Releasing the pre-strain causes the metal interconnects of the circuits to buckle and form arc-shaped structures, which accommodate the deformation and make the semiconductor materials much more stretchable, without inducing significant changes in their electrical properties. The design is called noncoplanar mesh design.

The study is featured in the cover of the December issue of the Proceedings of the National Academy of Sciences (PNAS) and was selected for the special section of the journal called "In this issue." The work is titled "Materials and Noncoplanar Mesh Designs for Integrated Circuits with Linear Elastic Responses to Extreme Mechanical Deformations". The study describes a design system that can be stretched or compressed to high levels of strain, in any direction or combination of directions, with electronic properties that are independent of such strain, even in extreme arrangements. These types of systems might enable new applications not possible with current methods.

Source: University of Miami

Explore further: The latest fashion: Graphene edges can be tailor-made

add to favorites email to friend print save as pdf

Related Stories

The importance of building small things

Jan 22, 2015

Strong materials, such as concrete, are usually heavy, and lightweight materials, such as rubber (for latex gloves) and paper, are usually weak and susceptible to tearing and damage. Julia R. Greer, professor ...

World's most powerful electrical testing system unveiled

Jan 15, 2015

Florida State University's Center for Advanced Power Systems has unveiled a new 24,000-volt direct current power test system, the most powerful of its kind available at a university research center throughout ...

Live images from inside materials

Dec 01, 2014

X-rays are a tried and tested way to investigate components and materials. Researchers are now developing an X-ray detector capable of delivering particularly high-quality 3D images in real time. This will ...

Recommended for you

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

The importance of building small things

Jan 22, 2015

Strong materials, such as concrete, are usually heavy, and lightweight materials, such as rubber (for latex gloves) and paper, are usually weak and susceptible to tearing and damage. Julia R. Greer, professor ...

Graphene brings quantum effects to electronic circuits

Jan 22, 2015

Research by scientists attached to the EC's Graphene Flagship has revealed a superfluid phase in ultra-low temperature 2D materials, creating the potential for electronic devices which dissipate very little ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.