Fabricating 3D Photonic Crystals

Jan 21, 2009 By Miranda Marquit feature

(PhysOrg.com) -- “In photonic crystals, the ability to control the structure of a material in full three dimensional space, allows you to control the way that light flows through it,” John Rogers tells PhysOrg.com. “This approach to photonic materials can be useful in applications ranging from communications to lasers to optical waveguides.”

Rogers, a scientist at the University of Illinois at Urbana-Champaign, and his colleagues at the University of Illinois and a team from Sandia National Laboratories in Albuquerque, New Mexico, have developed a simple technique that allows for the fabrication of silicon photonic crystals in 3-D. Their process is described in Applied Physics Letters: “Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography.”

“Theoretical studies of idealized structures of this general type suggest their promise for manipulating of the flow of light through devices,” Rogers continues, “but from a practical standpoint, the fabrication has been difficult. Often, these crystals are patterned in a two dimensional plane defined by a silicon wafer. If you want something three dimensional, you stack them up to form a thin structure that has some level of 3D character. Unfortunately, with this method, you have more steps, making it more involved and expensive.”

The team from the University of Illinois and Sandia decided to use phase mask lithography to create a full three dimensional silicon photonic crystal from the outset. Silicon is used because it has a high index of refraction, making it ideal for applications that make use of light. “The technique we’ve achieved is the culmination of six years of work as we tried to figure out how to optimize this process.”

In order to create 3-D photonic crystals, the team used rubber optical elements and a specially prepared polymer. Using a laser, it is possible to create a pattern out of the polymer to define the crystal geometry of the crystal - a mold. Next, Rogers said, the three dimensional structure mold was used as a template. “We grew silicon on the polymer template, similar to what is done in two dimensions in the microelectronics industry.” Finally, the polymer template is burned away, leaving the silicon photonic crystal behind.

“One of the key aspects of this fabrication process is that it is scalable,” Rogers says. “Not only are we facilitating patterning up front, but we’re also talking about a process that we can do over large areas, such as a square meter. In addition, it has the advantage of being adaptable to technology that already exists.”

The ability to create silicon photonic crystals that are larger, using a process that is less expensive and elaborate than what is normally used, offers some potential for applications dealing with light. Rogers points out that this fabrication process would be useful for reflective (or even anti-reflective) coatings, creating optical diodes and even accomplishing high speed data routing. He even sees potential to adapt the process to work on a micro level, integrating these types of techniques with electronics. “There are a number of applications that could benefit from this fabrication process, since it offers high quality, low-cost photonic crystals.”

More information: Shir, D., et. al. “Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography.” Applied Physics Letters (2009). Available online: link.aip.org/link/?APPLAB/94/011101/1 .

Copyright 2007 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: New terahertz device could strengthen security

add to favorites email to friend print save as pdf

Related Stories

Form Devices team designs Point as a house sitter

4 hours ago

A Scandinavian team "with an international outlook" and good eye for electronics, software and design aims to reach success with what they characterize as "a softer take" on home security. Their device is ...

Man pleads guilty in New York cybercrime case

7 hours ago

A California man has pleaded guilty in New York City for his role marketing malware that federal authorities say infected more than a half-million computers worldwide.

NASA issues 'remastered' view of Jupiter's moon Europa

15 hours ago

(Phys.org) —Scientists have produced a new version of what is perhaps NASA's best view of Jupiter's ice-covered moon, Europa. The mosaic of color images was obtained in the late 1990s by NASA's Galileo ...

Dish restores Turner channels to lineup

16 hours ago

Turner Broadcasting channels such as Cartoon Network and CNN are back on the Dish network after being dropped from the satellite TV provider's lineup during contract talks.

Recommended for you

New terahertz device could strengthen security

Nov 21, 2014

We are all familiar with the hassles that accompany air travel. We shuffle through long lines, remove our shoes, and carry liquids in regulation-sized tubes. And even after all the effort, we still wonder if these procedures ...

CERN makes public first data of LHC experiments

Nov 21, 2014

CERN today launched its Open Data Portal where data from real collision events, produced by experiments at the Large Hadron Collider (LHC) will for the first time be made openly available to all. It is expected ...

New technique allows ultrasound to penetrate bone, metal

Nov 20, 2014

Researchers from North Carolina State University have developed a technique that allows ultrasound to penetrate bone or metal, using customized structures that offset the distortion usually caused by these ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

QubitTamer
5 / 5 (1) Jan 22, 2009
But can they fabricate dilithium crystals...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.