New clot-buster found

Jan 20, 2009
New clot-buster found
Platelet cells stretching out their ‘sticky arms’ which help them clump together and stick to the blood vessel wall when forming a blood clot. Photo by Alastair Poole

(PhysOrg.com) -- Exciting research into blood clotting by British Heart Foundation (BHF) researchers working at the University of Bristol will take us a step closer to better heart attack prevention and treatment.
Blood clots can be both life-saving and life-threatening; life-saving when they stop bleeding, but life-threatening when they form in diseased arteries feeding the heart. Here they can cause a heart attack, and do so in 146,000 people in the UK every year.

Current anti-clotting medicines, such as aspirin, reduce the risk of heart attack but in some people they can also cause excessive and dangerous bleeding.

Professor Alastair Poole and his BHF-funded team in the Department of Physiology & Pharmacology at the University of Bristol have found in mice that removal of a particular protein - PKCα - from specialist cells in the blood, called platelets, prevents dangerous clot formation but does not cause excessive bleeding.

Professor Poole explains: “Platelets are small cells in the blood that sense when a blood vessel has been damaged. They rapidly become very adhesive and form a protective plaster over the site of damage.”

In heart disease, fatty plaques build up in the walls of the arteries feeding the heart. If one of these ruptures the platelets clump together at the site of damage and can block the vessel, which can cause a heart attack.

Alastair Poole continues: “We’ve discovered that a protein called PKCα is a major controller of platelet stickiness - if you remove PKCα the dangerous blood clots don’t form. Equally important, and surprising, is that we’ve also found that absence of PKCα doesn’t seem to impair the normal control of bleeding, unlike some current anti-clotting medicines.

“It’s too early to put anti- PKCα drugs on the market but we’re excited to have made a step in the right direction towards the development of a new family of potentially useful anti-clotting medicines for heart patients.”

Professor Jeremy Pearson, Associate Medical Director at the BHF, said: "We do have some effective clot-busting and clot-preventing medicines at present, but they can be rather blunt instruments with serious side-effects such as increased bleeding.

“Platelets are a major component of the clotting processes that cause heart attacks and strokes, and many scientists around the world are trying to decipher their inner workings, interactions, and controls toward the development of better, safer, drugs for heart patients.

"BHF supporters in Bristol have helped us to sponsor these excellent scientists to carry out vital research into platelets. These findings are another step forward in the fight against heart disease."

The research is published in The Journal of Clinical Investigation.

The paper: PKCα regulates platelet granule secretion and thrombus formation in mice by Olga Konopatskaya, Karen Gilio, Matthew T. Harper, Yan Zhao, Judith M.E.M. Cosemans, Zubair A. Karim, Sidney W. Whiteheart, Jeffery D. Molkentin, Paul Verkade, Steve P. Watson, Johan W.M. Heemskerk and Alastair W. Poole. The Journal of Clinical Investigation, (2009) vol 2, doi:10.1172/JCI34665. www.jci.org/articles/view/34665

Provided by University of Bristol

Explore further: Novel marker discovered for stem cells derived from human umbilical cord blood

add to favorites email to friend print save as pdf

Related Stories

Guns aren't the only things killing cops

Apr 11, 2014

The public does not realize—in fact, police themselves may not realize—that the dangers police officers are exposed to on a daily basis are far worse than anything on "Law and Order."

Nanoparticle pinpoints blood vessel plaques

Feb 06, 2014

A team of researchers, led by scientists at Case Western Reserve University, has developed a multifunctional nanoparticle that enables magnetic resonance imaging (MRI) to pinpoint blood vessel plaques caused by atherosclerosis. ...

Recommended for you

New pain relief targets discovered

1 hour ago

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

Building 'smart' cell-based therapies

2 hours ago

A Northwestern University synthetic biology team has created a new technology for modifying human cells to create programmable therapeutics that could travel the body and selectively target cancer and other ...

Proper stem cell function requires hydrogen sulfide

5 hours ago

Stem cells in bone marrow need to produce hydrogen sulfide in order to properly multiply and form bone tissue, according to a new study from the Center for Craniofacial Molecular Biology at the Herman Ostrow School of Dentistry ...

User comments : 0

More news stories

Study recalculates costs of combination vaccines

One of the most popular vaccine brands for children may not be the most cost-effective choice. And doctors may be overlooking some cost factors when choosing vaccines, driving the market toward what is actually a more expensive ...

Researchers discover target for treating dengue fever

Two recent papers by a University of Colorado School of Medicine researcher and colleagues may help scientists develop treatments or vaccines for Dengue fever, West Nile virus, Yellow fever, Japanese encephalitis and other ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...