How Toxoplasma gondii gets noticed

Jan 19, 2009

Researchers provide insight into how Toxoplasma gondii, a common parasite of people and other animals, triggers an immune response in its host. The report will appear online on January 19th in The Journal of Experimental Medicine.

A strong immune response spares T. gondii-infected hosts from deadly infection—an event that may also benefit the parasite, which relies on survival of the host to ensure its own transmission. But how the infected host elicits an immune response isn't completely understood. Like many other parasites, T. gondii resides within specialized vesicles inside infected host cells, but the process by which peptides from the trapped bugs are processed by infected cells and presented to killer T cells is mysterious.

Here, Romina Goldszmid and her colleagues at the National Institutes of Health in Bethesda use T. gondii infections in mice to study how portions of the parasitic proteins escape the vesicle in a process known as cross-presentation. They find that the parasite gets noticed by the immune system when the membrane of the bug-containing vesicle fuses to the endoplasmic reticulum—an organelle normally involved in presenting pathogens to T cells—allowing a swap of parasitic peptides.

Source: Rockefeller University

Explore further: Key milestone for brown fat research with a ground-breaking MRI scan

add to favorites email to friend print save as pdf

Related Stories

Revealing camouflaged bacteria

15 hours ago

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

A novel battleground for plant-pathogen interactions

Mar 13, 2014

Scientists at The Sainsbury Laboratory in Norwich, with collaborators at Michigan State University and the University of Illinois, have unveiled a new way in which plants perceive pathogens to activate immunity.

Recommended for you

Proper stem cell function requires hydrogen sulfide

1 hour ago

Stem cells in bone marrow need to produce hydrogen sulfide in order to properly multiply and form bone tissue, according to a new study from the Center for Craniofacial Molecular Biology at the Herman Ostrow School of Dentistry ...

Bionic ankle 'emulates nature'

6 hours ago

These days, Hugh Herr, an associate professor of media arts and sciences at MIT, gets about 100 emails daily from people across the world interested in his bionic limbs.

Firm targets 3D printing synthetic tissues, organs

8 hours ago

(Medical Xpress)—A University of Oxford spin-out, OxSyBio, will develop 3D printing techniques to produce tissue-like synthetic materials for wound healing and drug delivery. In the longer term the company ...

User comments : 0

More news stories

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Spate of Mideast virus infections raises concerns

A recent spate of infections from a frequently deadly Middle East virus is raising new worries about efforts to contain the illness, with infectious disease experts urging greater vigilance in combatting ...

Clean air: Fewer sources for self-cleaning

Up to now, HONO, also known as nitrous acid, was considered one of the most important sources of hydroxyl radicals (OH), which are regarded as the detergent of the atmosphere, allowing the air to clean itself. ...

Thinnest feasible nano-membrane produced

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

There's something ancient in the icebox

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...