Researchers: Molecular forklifts overcome obstacle to 'smart dust'

Jan 18, 2009

Algae is a livid green giveaway of nutrient pollution in a lake. Scientists would love to reproduce that action in tiny particles that would turn different colors if exposed to biological weapons, food spoilage or signs of poor health in the blood.

Now, University of Florida engineering researchers have tapped the working parts of cells to clear a major hurdle to creating such "smart dust."

The feat, which signifies a new approach to technology known as the "lab on a chip," is to be reported Sunday in the journal Nature Nanotechnology.

"Instead of just changing one part of an existing system, we have a new and different way of doing things," said Henry Hess, a UF assistant professor of materials science and engineering and the senior author of the paper. "And we can do it this way because of building blocks from bionanotechnology, and that's what makes it very exciting."

Chip-based labs have been developed in recent years as portable tools to gauge the presence of bioweapons, pollution, or to conduct on-the-spot blood tests. They are essentially assays, or ways to test for different pathogens, chemicals or compounds.

Scientists have suggested that the ever-shrinking labs could be reduced to the size of tiny particles of "smart" dust. But although today's versions may be small, they require equipment that is hand-held at its smallest, and often large enough to require a lab bench.

"It's like a computer," Hess said. "The central processing unit is the really interesting thing, but you need all this other stuff to make it work."

The extra equipment is needed because the assay, which uses pairs of antibodies to latch onto target contaminants and the markers that give away their presence, requires repeated flushing with water. That requires pumps, which need power. To miniaturize the system, it's necessary to build miniature pumps and batteries. But that's a challenge, especially for miniaturization to the level required for individual pieces of smart dust, Hess said.

His research strips out all peripheral equipment by using an altogether unique and different approach: biologically powered molecular forklifts.

The forklifts are assembled from natural motor proteins that are active in cell division. Hess and his team's main innovation is manipulating these tiny proteins to perform heavy lifting and transport tasks -- tasks that lead to a successful assay.

For a system rooted in biology, the process is uncannily mechanical.

Using standard laboratory methods, the researchers squirt the forklifts into the central zone of three-zone circular surface no larger than the period at the end of this sentence. They then attach the same antibodies used in traditional chip-based labs.

When the surface is exposed to a contaminant, the antibodies latch onto it, just as happens with traditional assays. But then, activated by a flash of light, molecular shuttles start pushing the forklifts into a second zone, where they load aboard fluorescent particles, or tags. They move their cargo to the third zone, at the edge of the circle. There, over several hours, they crowd against each other, accumulating to the point where their combined loads form a line visible under magnification - and providing the telltale indicator of the contaminant.

The process requires no rinsing. And instead of electricity, the naturally derived forklifts are powered by adenosine triphosphate, or ATP, the molecule that carries energy for cells.

"You have replaced all this washing with this active transport by molecular shuttles, so you don't need a pump or battery," Hess said.

Michael Sailor, a professor of chemistry and biochemistry at the University of California San Diego and prominent smart-dust researcher, called the research "quite promising."

"The key advance is that the authors incorporate a transport mechanism derived from a natural system into an artificial microsensor," he wrote in an e-mail. "The authors show how adding the ability to move around in an autonomous fashion can dramatically improve the performance of the microsensor."

Hess emphasized that the research results represent only the initial of many steps toward smart dust. Among other challenges, the molecular forklifts need to be sped up, producing results in seconds or minutes rather than hours. But, he said, the process suggests that there are promising, alternative to traditional lab-on-a-chip assays.

"Right now, this is light years away from competing with any assay," he said. "But, it is a completely different way of doing it."

Source: University of Florida

Explore further: Research reveals how our bodies keep unwelcome visitors out of cell nuclei

add to favorites email to friend print save as pdf

Related Stories

How the hummingbird achieves its aerobatic feats

1 hour ago

(Phys.org) —The sight of a tiny hummingbird hovering in front of a flower and then darting to another with lightning speed amazes and delights. But it also leaves watchers with a persistent question: How ...

'Mind the gap' between atomically thin materials

3 hours ago

In subway stations around London, the warning to "Mind the Gap" helps commuters keep from stepping into empty space as they leave the train. When it comes to engineering single-layer atomic structures, minding ...

Seychelles poachers go nutty for erotic shaped seed

3 hours ago

Under cover of darkness in the steamy jungles of the Seychelles thieves creep out to harvest the sizeable and valuable nuts of the famous coco de mer palm, and their activities are threatening its long-term ...

Recommended for you

Study shows graphene able to withstand a speeding bullet

9 hours ago

(Phys.org)—A team of researchers working at Rice University in the U.S. has demonstrated that graphene is better able to withstand the impact of a bullet than either steel or Kevlar. In their paper published ...

Nanomaterials to preserve ancient works of art

Nov 27, 2014

Little would we know about history if it weren't for books and works of art. But as time goes by, conserving this evidence of the past is becoming more and more of a struggle. Could this all change thanks ...

Learning anti-microbial physics from cicada

Nov 27, 2014

(Phys.org) —Inspired by the wing structure of a small fly, an NPL-led research team developed nano-patterned surfaces that resist bacterial adhesion while supporting the growth of human cells.

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

el_gramador
not rated yet Jan 18, 2009
Great, just make them line up in the center of a certain field. Magnify, and voila.
NeilFarbstein
not rated yet Jan 18, 2009
why would they "love" to replace algae with artificial nanobots? Its' unscientific to say 1 out of ten scientists would love to cure the world's problems.
Mercury_01
not rated yet Jan 19, 2009
Oh, thank GOD. This smart dust is getting way to heavy, and its starting to pile up again.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.