Possible new hope for crops battling parasitic infection

Jan 16, 2009

Scientists from Ghent University and VIB (The Flemisch Institute for Biotechnology) have demonstrated how nematodes, also known as roundworms, manipulate the transport of the plant hormone auxin in order to force the plant to produce food for them. Their findings, published January 16 in the open-access journal PLoS Pathogens, could open up new possibilities for the development of nematode-resistant plants.

Typical symptoms of a nematode infection in plants are withering, seriously retarded growth, and impaired development of flower and fruit; severely infected plants often do not survive the damage. Each year, plant-parasitic roundworms cause more than 80 billion euro in agricultural losses worldwide.

Some nematodes have developed an ingenious way of making a plant feed them. They penetrate the plant's roots and make their way to their host's vascular bundles, which are part of the plant's transport system for nutrients and water. The roundworms inject a protein cocktail into a single plant cell of the vascular bundle system, causing the plant cell to merge with neighboring cells and start producing food for the worm. This plant cell − which can become as large as 200 normal plant cells − is called the "nematode feeding site."

In this study, Wim Grunewald and his colleagues demonstrate that roundworms mislead the plant by disrupting its hormonal regulation. The plant hormone auxin, important for most plant developmental processes, accumulates at the site of infection. Later, when the feeding site needs to grow, auxin accumulates in the neighboring plant cells. Until now, scientists have not known how nematodes manipulate the transport of auxin. Grunewald's team studied the role of plant PIN proteins, which enable auxin transport, and show that nematodes knock out certain PIN proteins and activate others in order to establish and develop the nematode feeding sites.

This discovery advances our understanding of how nematodes feed themselves through plants, and it may lead to ways to thwart these worms in crops − such as by locally counteracting the nematodes' manipulation of auxin transport.

Citation: Grunewald W, Cannoot B, Friml J, Gheysen G (2009) Parasitic Nematodes Modulate PIN-Mediated Auxin Transport to Facilitate Infection. PLoS Pathog 5(1): e1000266. doi:10.1371/journal.ppat.1000266, dx.plos.org/10.1371/journal.ppat.1000266

Source: Public Library of Science

Explore further: The environment may change, but the microbiome of queen bees does not

add to favorites email to friend print save as pdf

Related Stories

When a gene is worth 2

Mar 22, 2013

The notion that each gene can only codify for a single protein has been challenged for some years. Yet, the functional outcomes that may result from genes encoding more than one protein are still largely unknown.

Recommended for you

Sall4 is required for DNA repair in stem cells

18 minutes ago

A protein that helps embryonic stem cells (ESCs) retain their identity also promotes DNA repair, according to a study in The Journal of Cell Biology. The findings raise the possibility that the protein, Sall4, ...

Desmoplakin's tail gets the message

20 minutes ago

Cells control the adhesion protein desmoplakin by modifying the tail end of the protein, and this process goes awry in some patients with arrhythmogenic cardiomyopathy, according to a study in The Journal of ...

How animals survive Norwegian winter nights

36 minutes ago

Norwegian mammals and birds have many different methods of surviving long, intense winter nights. A biologist from the Norwegian University of Science and Technology (NTNU) University Museum reveals their ...

Looking for alternatives to antibiotics

1 hour ago

Bacteria that talk to one another and organize themselves into biofilms are more resistant to antibiotics. Researchers are now working to develop drugs that prevent bacteria from communicating.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.