Researchers find essential proteins for critical stage of malaria

Jan 16, 2009

Researchers at the Johns Hopkins Malaria Research Institute (JHMRI) have identified the molecular components that enable the malaria-causing parasite Plasmodium to infect the salivary glands of the Anopheles mosquito—a critical stage for spreading malaria to humans. According to the researchers, saglin, a mosquito salivary protein, is a receptor for the Plasmodium protein Thrombospondin-Related Anonymous Protein (TRAP). The two proteins bind together to allow invasion of the salivary gland by Plasmodium sporozoites, which can be transmitted to a human when bitten by an infected mosquito. The findings are published January 16 in the open-access journal PLoS Pathogens.

Malaria is estimated to infect 300 to 500 million people worldwide resulting in over 1 million deaths each year. JHMRI was established in 2001 at the Bloomberg School of Public Health to mount a broad program of basic-science research to treat and control the deadly disease.

Through a series of experiments, Marcelo Jacobs-Lorena, PhD, and his colleagues found that saglin bound with the artificial peptide SM1. The team then developed an antibody to find a protein similar to SM1 that existed naturally in the parasite, which they identified as TRAP. To further prove the interaction between saglin and TRAP, the team conducted experiments to down-regulate, or switch off, saglin expression, which greatly diminished salivary gland invasion in the mosquito.

"This work is the culmination of a decade-long research project in which peptide libraries were used to understand the mechanisms that the parasite uses to develop in its obligatory mosquito host," explained Jacobs-Lorena. "We are learning more and more about how the malaria parasite develops inside the mosquito, which could lead to novel approaches for disrupting its lifecycle and preventing the spread of malaria."

Citation: Ghosh AK, Devenport M, Jethwaney D, Kalume DE, Pandey A, et al. (2009) Malaria Parasite Invasion of the Mosquito Salivary Gland Requires Interaction between the Plasmodium TRAP and the Anopheles Saglin Proteins. PLoS Pathog 5(1): e1000265. doi:10.1371/journal.ppat.1000265, dx.plos.org/10.1371/journal.ppat.1000265

Source: Public Library of Science

Explore further: New conversion process turns biomass 'waste' into lucrative chemical products (w/ Video)

add to favorites email to friend print save as pdf

Related Stories

The 'yin and yang' of malaria parasite development

Jul 09, 2014

Scientists searching for new drug and vaccine targets to stop transmission of one of the world's deadliest diseases believe they are closer than ever to disrupting the life-cycle of this highly efficient ...

Malaria parasite manipulates host's scent

Jun 30, 2014

Malaria parasites alter the chemical odor signal of their hosts to attract mosquitos and better spread their offspring, according to researchers, who believe this scent change could be used as a diagnostic ...

Recommended for you

Researchers discover protein protecting against chlorine

1 hour ago

Chlorine is a common disinfectant that is used to kill bacteria, for example in swimming pools and drinking water supplies. Our immune system also produces chlorine, which causes proteins in bacteria to lose ...

Big data and the science of the Christmas tree

2 hours ago

Often called the "Cadillac of Christmas trees," the Fraser Fir has everything a good Christmas tree should have: an even triangular shape, a sweet piney fragrance, and soft needles that (mostly) stay attached ...

Quest to unravel mysteries of our gene network

2 hours ago

There are roughly 27,000 genes in the human body, all but a relative few of them connected through an intricate and complex network that plays a dominant role in shaping our physiological structure and functions.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.