Dust around a primitive star sheds new light on universe's origins

Jan 15, 2009
The Sculptor Dwarf galaxy, with the position of carbon star MAG 29 noted. Palomar Digitized Sky Survey

(PhysOrg.com) -- A Cornell-led team of astronomers has observed dust forming around a dying star in a nearby galaxy, giving a glimpse into the early universe and enlivening a debate about the origins of all cosmic dust.

The findings are reported in the Jan. 16 issue of the journal Science (Vol. 323, No. 5912). Cornell research associate Greg Sloan led the study, which was based on observations with NASA's Spitzer Space Telescope. The researchers used Spitzer's Infrared Spectrograph, which was developed at Cornell.

Dust plays a key role in the evolution of such galaxies as our Milky Way. Stars produce dust - rich with carbon or oxygen - as they die. But less is known about how and what kind of dust was created in galaxies as they formed soon after the big bang.

Sloan and his colleagues observed dust forming around the carbon star MAG 29, located 280,000 light years away in a smaller nearby galaxy called the Sculptor Dwarf. Stars more massive than the sun end their lives as carbon stars, which in our galaxy are a rich source of dust.

MAG 29. Credit: Anglo Australian Observatory

The Sculptor Dwarf contains only 4 percent of the carbon and other heavy elements in our own galaxy, making it similar to primitive galaxies seen at the edge of the universe. Those galaxies emitted the light we now see soon after they and the universe formed.

"What this tells us is that carbon stars could have been pumping dust soon after the first galaxies were born," Sloan said.

Scientists have debated where the dust in the early universe comes from. Supernovae have been a favorite suspect, but they may destroy more dust than they create.

"While everyone is focused on the questions of how much and what kind of dust supernovae make, they may not have appreciated that carbon stars can make at least some of the dust we are seeing," Sloan said. "The more we can understand the quantity and composition of the dust, the better we can understand how stars and galaxies evolve, both in the early universe and right next door."

Observing such stars as MAG 29 is not unlike using a time machine, Sloan said, in which astronomers can catch glimpses of what the universe looked like billions of years ago.

"We haven't seen carbon-rich dust in this primitive of an environment before," Sloan said.

Provided by Cornell University

Explore further: Australian researchers pioneer a 'Google street view' of galaxies

add to favorites email to friend print save as pdf

Related Stories

Under the bright lights of an aging sun

Jul 04, 2014

Life as we know it on Earth is linked to our star, the Sun, which provides our planet with just the right amount of heat and energy for liquid water to be stable in our lakes, rivers and oceans. However, ...

Young sun's violent history solves meteorite mystery

Jul 01, 2014

(Phys.org) —Astronomers using ESA's Herschel space observatory to probe the turbulent beginnings of a Sun-like star have found evidence of mighty stellar winds that could solve a puzzling meteorite mystery ...

CHESS rocket to study birthplace of stars

May 28, 2014

Update - May 27, 2014: NASA successfully launched the Colorado High-resolution Echelle Stellar Spectrograph, or CHESS, payload aboard a Black Brant IX suborbital sounding rocket at 3:35 a.m. EDT on May 24 ...

Researchers find young galaxies not behaving as expected

Apr 30, 2014

(Phys.org) —New Herschel Space Observatory findings have given scientists a remarkable insight into the internal dynamics of two young galaxies. Surprisingly, they have shown that just a few billion years ...

A star's early chemistry shapes life-friendly atmospheres

Apr 23, 2014

Born in a disc of gas and rubble, planets eventually come together as larger and larger pieces of dust and rock stick together. They may be hundreds of light-years away from us, but astronomers can nevertheless ...

Recommended for you

Fermi finds a 'transformer' pulsar

16 hours ago

(Phys.org) —In late June 2013, an exceptional binary containing a rapidly spinning neutron star underwent a dramatic change in behavior never before observed. The pulsar's radio beacon vanished, while at ...

User comments : 0