Energy-efficient water purification

Jan 14, 2009

Water and energy are two resources on which modern society depends. As demands for these increase, researchers look to alternative technologies that promise both sustainability and reduced environmental impact. Engineered osmosis holds a key to addressing both the global need for affordable clean water and inexpensive sustainable energy according to Yale researchers.

Yale doctoral student Robert McGinnis and his advisor Menachem Elimelech, Chair of Chemical and Environmental Engineering, have designed systems that harness the power of osmosis to harvest freshwater from non-potable sources, including seawater and generate electricity from low-temperature heat sources, such as waste heat from conventional power plants.

Yale University is commercializing their desalination technology through a newly-established company, Oasys. Their approach, which requires only one-tenth the electric energy used with conventional desalination systems, was featured in the December issue of Environmental Science & Technology.

"The ideal solution," says Elimelech, "is a process that effectively utilizes waste heat."

According to the authors, desalination and reuse are the only options for increasing water supply beyond that which is available through the hydrologic cycle — the continuous movement of water on, above, and below the surface of the Earth. However, conventional desalination and reuse technologies use substantial energy.

Using a new twist on an old technology, the engineers are employing "forward osmosis," which exploits the natural diffusion of water through a semi-permeable membrane. Their process "draws" pure water from its contaminants to a solution of concentrated salts, which can easily be removed with low heat treatment — effectively desalinating or removing contaminants from water with little energy input.

Another application of engineered osmosis the Yale researchers are pioneering, the osmotic heat engine, may be used to generate electrical energy. Elimelech and McGinnis say that it is possible to produce electricity economically from lower-temperature heat sources, including industrial waste heat, using a related method — pressure-retarded osmosis. In this closed loop process, the "draw" solution is held under high hydraulic pressure. As water moves into the pressurized draw solution, the pressure of the expanded volume is released through a turbine to generate electrical energy. The applied hydraulic pressure can be recovered by a pressure exchanger like those used in modern reverse osmosis desalination plants.

"The cost of producing electricity by this method could be competitive with existing means of power production" says Elimelech.

Citation: Environmental Science & Technology 42: 8625-29 (2008) doi:10.1021/es800812m

Source: Yale University

Explore further: Hoverbike drone project for air transport takes off

add to favorites email to friend print save as pdf

Related Stories

More energy from a liter of biofuel

Jul 18, 2014

Oil produced from biomass - such as wood chips or plant residues - seldom has the same quality and energy content as 'classical' crude oil. A new, simple catalyst, developed at the University of Twente, improves ...

New view of Rainier's volcanic plumbing

Jul 17, 2014

By measuring how fast Earth conducts electricity and seismic waves, a University of Utah researcher and colleagues made a detailed picture of Mount Rainier's deep volcanic plumbing and partly molten rock ...

Fuel cells for powering homes

Jul 16, 2014

One of the applications that fuel cells may have is the supplying of homes with electrical power. When considering applications of this type that call for greater power, a research group in the UPV/EHU's Department of Mineralogy ...

Recommended for you

Hoverbike drone project for air transport takes off

14 hours ago

What happens when you cross a helicopter with a motorbike? The crew at Malloy Aeronautics has been focused on a viable answer and has launched a crowdfunding campaign to support its Hoverbike project, "The ...

Student develops filter for clean water around the world

Jul 23, 2014

Roughly 780 million people around the world have no access to clean drinking water. According to the World Health Organization (WHO), 3.4 million people die from water-related diseases every year. ETH student Jeremy Nussbaumer ...

Minimising drag to maximise results

Jul 23, 2014

One of the most exciting parts of the Tour de France for spectators is the tactical vying for spots in the breakaway group at the front of the pack.

User comments : 0