Bias in the rock record?

Jan 14, 2009
Bias in the rock record?
Peaks of zircon ages compared with peaks of ages of juvenile crust.

(PhysOrg.com) -- The fossil record is known to be biased by the unevenness of geographical and stratigraphical sampling, and the lack of exposed rocks containing fossils. In a recent Perspective in Science [2 January 2009] Professor Chris Hawkesworth from the University of Bristol and colleagues suggest that a similar unevenness biases the record of the evolution of the continental crust.

Rocks of the continental crust are dated using zircons, an extremely durable mineral that forms during the generation of granitic rocks. Some granites represent the formation of new continental crust and the zircons eroded out of these can persist for billions of years in sedimentary deposits. Other granites are generated from the melting of continental crust formed from such deposits. The age of that pre-existing crust can still be determined from the zircons, and the oldest zircon ever found is from such ancient sediments. It is 4.4 billion years old, only 150 million years younger than the planet itself.

It has long been known that the ages of rocks which form the continents are constrained to several peaks throughout Earth's history, but why this should be is open to question. The debate has previously focused on the likelihood that these peaks are related to deep-seated thermal anomalies within the Earth, resulting in so-called ‘superplumes’ which lead to periods of accelerated magmatism and the growth of continental crust.

More recently, the debate has turned to the potential correlation of peaks of continental magmatism with the periodic formation of ‘supercontinents’, such as Pangea and Gondwanaland. It is not clear, however, why the development of supercontinents should be associated with the generation of unusual volumes of igneous rocks. What seems more likely is that the age peaks in the continental rock record reflect a bias in preservation during periods of supercontinent formation where magmatism and crustal growth have an enhanced chance of preservation, because they are protected within the enveloping supercontinent.

In between periods of supercontinent formation, continuous magmatism at plate margins such as the Pacific ‘Ring of Fire’ where oceans are subducted beneath the continents, appears to have a much lower preservation potential, since crust along subduction zones is destroyed as fast as it is made.

Hawkesworth and his colleagues argue, therefore, that the age peaks within the continental crust are largely a bias related to preservation, or the lack of it, and that this needs to be taken into account when using the continental crust as a probe for the geodynamic evolution of the Earth. One implication is that at least since the Archaean (2.5 billion years ago) Earth geodynamics have been relatively uniformitarian.

The paper: A Matter of Preservation. Chris Hawkesworth, Peter Cawood, Tony Kemp, Craig Storey, Bruno Dhuime. Science, 2 January 2009: Vol. 323. no. 5910, pp. 49 - 50. DOI: 10.1126/science.1168549

Provided by University of Bristol

Explore further: Magnitude-7.2 earthquake shakes Mexican capital

add to favorites email to friend print save as pdf

Related Stories

GPS also helps to analyze global water resources

Mar 19, 2014

WaterGAP (Water Global Assessment and Prognosis) is a hydrological model used to model water shortage, groundwater depletion, and floods and droughts (e.g. as impacted by climate change) over the land area of the globe. The ...

How did early Earth protect itself against the cold?

Feb 07, 2014

Earth's Sun was a weakling when it was younger. Around three or four billion years ago, the star's energy was about 20 percent to 25 percent lower than what's experienced today. If that was still true today, ...

Continents set the pace

Jan 28, 2014

The origin and stimulus behind plate tectonics has been simulated with the aid of high-performance computers. A new study sheds light on the role continents play in the formation of oceanic crust.

Is there an ocean beneath our feet?

Jan 27, 2014

(Phys.org) —Scientists at the University of Liverpool have shown that deep sea fault zones could transport much larger amounts of water from the Earth's oceans to the upper mantle than previously thought.

Recommended for you

Magnitude-7.2 earthquake shakes Mexican capital

Apr 18, 2014

A powerful magnitude-7.2 earthquake shook central and southern Mexico on Friday, sending panicked people into the streets. Some walls cracked and fell, but there were no reports of major damage or casualties.

User comments : 0

More news stories

China says massive area of its soil polluted

A huge area of China's soil covering more than twice the size of Spain is estimated to be polluted, the government said Thursday, announcing findings of a survey previously kept secret.

UN weather agency warns of 'El Nino' this year

The UN weather agency Tuesday warned there was a good chance of an "El Nino" climate phenomenon in the Pacific Ocean this year, bringing droughts and heavy rainfall to the rest of the world.

Growing app industry has developers racing to keep up

Smartphone application developers say they are challenged by the glut of apps as well as the need to update their software to keep up with evolving phone technology, making creative pricing strategies essential to finding ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.