Low temperature fuel cells: New clean, energy efficient technology to power cars and mobiles

Jan 13, 2009

(PhysOrg.com) -- A new version of an environmentally friendly, energy efficient technology that could replace combustion engines in cars and batteries in mobile devices such as phones and laptops is being researched by Aberdeen experts.

Academics from the University of Aberdeen are investigating the possibility of a new type of low temperature fuel cell.

Fuel cells convert fuels into electricity directly without the need for combustion.

Low temperature fuel cells could be used to provide power for vehicles, portable devices and small stationary power in a way that is less damaging to the environment than current powering methods.

Conventional low temperature fuel cells are on the verge of entering the market.

However making fuel cells as common and widely available as the conventional battery or engine is proving difficult because there are several significant challenges that still need to be overcome - including the high cost of the components and the low tolerance of the fuel cell to carbon.

Hydrogen is used as the main fuel in low temperature fuel cell technology, but as it is mainly produced from fossil fuels, it contains carbon-containing impurities.

In current models of low temperature fuel cells, the carbon forms carbon monoxide that will clog up the surface of the electrode part of the fuel cell making it less efficient in producing energy.

Researchers from the University's Chemistry department have been awarded £288,000 of funding from Scottish Enterprise's Proof of Concept Programme for a two year project to develop their idea of how the electrode can be modified to make it more efficient in dealing with carbon monoxide.

The innovative electrode design will enable the fuel cell to use either carbon-contaminated hydrogen or hydrocarbon fuels such as methanol, biofuels or natural gas without the need for upstream reforming - a costly and cumbersome process whereby hydrogen fuels are "cleaned" prior to use. This makes it a more cost effective option than the low temperature fuel cell systems that are currently on the market.

It is hoped if successful that the creation of a lower cost option will result in the fuel cell being introduced to the marketplace more quickly and more widely than expected.

Dr Angela Kruth, from the University of Aberdeen's Chemistry Department is leading the project. She said: "The aim is to create a new type of low temperature fuel cell, which is able to deal with carbon monoxide better than those currently on the market - and as a result is cheaper and more efficient in producing electricity.

"Our research will focus on the electrode part of the fuel cell and develop ways in which it can better cope with the carbon monoxide found in the fuel which it is converting into power.

"Although the long-term goal is zero emission production of ultra-pure hydrogen from renewable sources such as wind, solar or tidal power, currently carbon-containing fuels are still the dominating energy source.

"The new low temperature fuel cell will be able to use carbon-containing fuels directly and is expected to drastically accelerate fuel cell technology breakthrough into the current market."

Provided by University of Aberdeen

Explore further: Big box stores could ditch the grid, use natural gas fuel cells instead

add to favorites email to friend print save as pdf

Related Stories

Teachers become healthier when they learn

6 minutes ago

Several studies have indicated a connection between learning and health. In a recently published study from University West and Linnaeus University the researchers found that the health of school teachers ...

'Slow motion at the speed of light'

26 minutes ago

New technology developed by a collaboration between the UA and the University of California, Los Angeles, provides real-time monitoring of streaming video to optimize network traffic.

Virtual vehicle testing – modeling tires realistically

26 minutes ago

Manufacturers conduct virtual tests on vehicle designs long before the first car rolls off the assembly line. Simulation of the tires has remained a challenge, however. The software tool "CDTire/3D" from ...

Recommended for you

Power-generating urinal pioneered in Britain

12 hours ago

British scientists on Thursday unveiled a toilet that unlocks energy stored within urine to generate electricity, which they hope could be used to light remote places such as refugee camps.

Why your laptop battery won't kill you

Mar 03, 2015

News on Tuesday that major U.S. airlines are no longer going to ship powerful lithium-ion batteries might lead some to fret about the safety of their personal electronic devices.

New incubator network to help clean-energy entrepreneurs

Mar 03, 2015

The Energy Department's National Renewable Energy Laboratory (NREL) and the Electric Power Research Institute (EPRI) have launched the Clean Energy Incubator Network. The program, funded by the Energy Department, aims to ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

NeilFarbstein
3 / 5 (2) Jan 13, 2009
Vulvox has begun experiments on lithium ion batteries with unprecedented energy storage capacity; 42 kwh/kg. They also take advantage of inexpensive processes of manufacturing silicon nanowires. Our breakthrough batteries will store as much energy per unit weight as fuel cells and will be used in the growing fleet of plug in hybrid vehicles. Our R&D program has been underway for several years. Vulvox is developing a comparable battery that will cost much less to manufacture, and we've been in the race to develop a super lithium ion battery for some time now. Our research was based on the same theoretical foundations as the research at Stanford. Our patent pending carbon nanotube adhesive material has shown properties such as ultra high porosity; necessary to manufacture ultracapacitors and it might be useful as electrode material for lithium ion batteries also.
HTTP://VULVOX.TRIPOD.COM
E_L_Earnhardt
3 / 5 (2) Jan 13, 2009
Good Work!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.